###
计算机系统应用英文版:2021,30(12):187-193
本文二维码信息
码上扫一扫!
融合信任因子的多样化电影推荐算法
(北京邮电大学 计算机学院(国家示范性软件学院), 北京 100876)
Diversified Movie Recommendation Algorithm Based on Trust Factor
(School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing 100876, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 718次   下载 1612
Received:March 09, 2021    Revised:April 09, 2021
中文摘要: 传统的协同过滤算法过于依赖用户之间的评分, 容易出现冷启动和数据稀疏性问题, 同时推荐结果单一, 针对以上问题, 本文提出了一种融合信任因子的多样化电影推荐算法. 首先对用户相似度计算方法进行改进, 引入用户间信任度关系和属性特征信息. 接着使用聚类方法把具有相同兴趣的用户划分在同一社群. 最后在评分时综合考虑用户活跃度对电影的推荐度, 引入惩罚因子, 从而为目标用户提供个性化、多样化的电影推荐. 实验结果表明, 本文提出的算法在推荐精度和多样性指标上均有所提高, 有较好的推荐效果.
Abstract:Traditional collaborative filtering algorithm relies much on ratings among users, which is prone to cold start and data sparsity. In addition, the recommendation results are single. To solve the above problems, this study proposes a diversified movie recommendation algorithm based on trust factor. Firstly, the calculation method of user similarity is improved, and the trust relationship and attribute characteristic information between users are introduced. Next, clustering is conducted to divide users with the same interest into the same community. Finally, user activity, as the movie recommendation degree, is taken into consideration comprehensively in the rating. The penalty factor is introduced, so as to facilitate personalized and diversified movie recommendations for target users. Experimental results show that the proposed algorithm can improve the recommendation accuracy and diversity, achieving a good recommendation effect.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
王雨晨.融合信任因子的多样化电影推荐算法.计算机系统应用,2021,30(12):187-193
WANG Yu-Chen.Diversified Movie Recommendation Algorithm Based on Trust Factor.COMPUTER SYSTEMS APPLICATIONS,2021,30(12):187-193