###
计算机系统应用英文版:2022,31(1):309-314
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于PSO-RBF神经网络的刀具寿命预测
(1.太原科技大学 计算机科学与技术学院, 太原 030024;2.太原科技大学 机械工程学院, 太原 030024)
Tool Life Prediction Based on PSO-RBF Neural Network
(1.School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China;2.School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 740次   下载 1649
Received:March 24, 2021    Revised:April 21, 2021
中文摘要: 有效的刀具寿命预测可以提高加工效率,保证工件加工精度,因此具有重要的研究价值.刀具寿命预测受到刀具材质、切削参数以及加工材料等多因素的影响,导致刀具寿命难以准确预测.针对这一问题提出了一种利用粒子群(particle swarm optimization,PSO)算法优化径向基(radial basis function,RBF)神经网络的刀具寿命预测方法.首先用PSO算法优化RBF神经网络的主要参数中心值c,宽度σ以及连接权值w,然后将影响刀具寿命的多个因素作为PSO-RBF神经网络模型的输入神经元,寿命作为输出神经元进行刀具寿命预测.论文提出的基于PSO-RBF神经网络的刀具寿命预测方法,经实验证明该算法平均相对误差为6.16%,与标准的RBF神经网络预测结果相比降低了17.14%,具有可行性.
Abstract:Effective tool life prediction holds important research value in that it can improve the machining efficiency and ensure the machining accuracy of a workpiece. However, accurate tool life prediction is difficult to achieve as it is influenced by many factors such as tool material, cutting parameters, and machining material. So we propose a method of tool life prediction based on a radial basis function (RBF) neural network optimized by the particle swarm optimization (PSO) algorithm. Firstly, the main parameters of the RBF neural network, namely the center value c, width σ, and connection weight w, are optimized by the PSO algorithm. Then, tool life prediction is carried out, with the factors affecting tool life as input neurons of the PSO-RBF neural network model and tool life as the output neuron. The experimental results show that the proposed method of tool life prediction based on the PSO-RBF neural network is feasible, with an average relative error reduced by 17.14% from that of the standard RBF neural network to 6.16%.
文章编号:     中图分类号:    文献标志码:
基金项目:山西省回国留学人员基金(HGKY2019079)
引用文本:
李建伟,刘成波,郭宏,吕娜.基于PSO-RBF神经网络的刀具寿命预测.计算机系统应用,2022,31(1):309-314
LI Jian-Wei,LIU Cheng-Bo,GUO Hong,LYU Na.Tool Life Prediction Based on PSO-RBF Neural Network.COMPUTER SYSTEMS APPLICATIONS,2022,31(1):309-314