###
计算机系统应用英文版:2021,30(12):180-186
本文二维码信息
码上扫一扫!
针对多目标的分布式多边融合定位
(山西大学 数学科学学院, 太原 030006)
Distributed Multilateral Fusion Localization for Multi-Target
(School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 686次   下载 1308
Received:February 27, 2021    Revised:March 29, 2021
中文摘要: 针对基于接收信号强度指数(Received Signal Strength Indicator, RSSI)的多目标定位问题, 结合点估计与椭圆估计算法, 提出一种新的分布式多边融合定位(Distributed Multi-lateral Fusion Localization, DMFL)算法. 首先, 通过多边定位算法进行粗定位, 估计目标的大致位置. 其次, 基于区间分析理论在线获取泰勒展式高阶余项的边界, 并通过集员递归算法求解多目标定位问题. 最后, 通过实验和仿真验证该算法的定位性能. 结果表明, 在相同的节点布置条件下, 与最新的RSSI定位算法相比, 该算法的定位精度更高, 最大误差小于0.3 m, 并可提供保证包含目标真实位置的最优区域.
Abstract:To realize the multi-target localization based on Received Signal Strength Indicator (RSSI), this study proposes a new Distributed Multilateral Fusion Localization (DMFL) algorithm with point estimation and ellipse estimation. Firstly, the rough locations of targets are estimated by the multilateral localization algorithm. Then, in light of the interval analysis theory, the higher-order remainder bound of Taylor series expansion is obtained and the set-membership recursive algorithm is used to solve the problem of multi-target localization. Finally, the performance of the localization algorithm is verified through experiments and simulations. The results show that, under the same nodes layout conditions, the algorithm improves the accuracy of localization compared with the latest localization algorithms, with the maximum error being less than 0.3 m. Moreover, it can determine the optimal regions that contain the real locations of targets.
文章编号:     中图分类号:    文献标志码:
基金项目:山西省回国留学人员科研资助项目(2021-008); 山西省自然科学基金重点研发项目(201903D121145)
引用文本:
张利军,杨波,苏俊琦,梁宇倩.针对多目标的分布式多边融合定位.计算机系统应用,2021,30(12):180-186
ZHANG Li-Jun,YANG Bo,SU Jun-Qi,LIANG Yu-Qian.Distributed Multilateral Fusion Localization for Multi-Target.COMPUTER SYSTEMS APPLICATIONS,2021,30(12):180-186