###
计算机系统应用英文版:2021,30(12):350-354
本文二维码信息
码上扫一扫!
床垫式睡眠监测系统及信号处理方法
(1.北京石油化工学院 信息工程学院, 北京 102617;2.中国航天员科研训练中心, 北京 100094)
Mattress Sleep Monitoring System and its Signals Processing
(1.School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China;2.Scientific Research Training Center for Chinese Astronauts, Beijing 100094, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 674次   下载 1657
Received:February 26, 2021    Revised:March 19, 2021
中文摘要: 为解决非接触式睡眠监测系统中混合信号的可靠获取以及生理特征参数的有效分离和识别等问题, 采用压电薄膜传感器获取人体睡眠状态下压力信号, 并采用电荷放大电路和信号调理电路进行实时采集; 信号处理过程中先利用经验小波变换方法分离心冲击(BCG)和呼吸信号等单一模态分量, 然后使用K-means算法对分离出的心冲击信号中不同类型的波峰聚类, 进而通过平均心跳周期计算心率. 实验结果表明, 所设计的监测系统具有较强的自适应性, 能有效提取呼吸和心跳信号.
Abstract:For the reliable acquisition of mixed signals and the effective separation and recognition of physiological parameters in a non-contact sleep monitoring system, a piezoelectric film sensor is used to obtain the pressure signal of the human body in the sleep state. Meanwhile, a charge amplification circuit and a signal conditioning circuit are adopted to collect the pressure signal in real time. During signal processing, empirical wavelet transform is employed to separate single modal components, such as the BallistoCardioGram (BCG) signal and the respiratory signal. Then, the K-means algorithm is used to cluster different types of peaks in the BCG signal so that the heart rate can be calculated through the average heartbeat cycle. The experimental results show that the designed monitoring system has strong adaptability and it can extract respiratory and heartbeat signals.
文章编号:     中图分类号:    文献标志码:
基金项目:北京市教委科研计划(KM201910017005)
引用文本:
李伟,梅莉丽,吕高冲,余新明,江慧娜.床垫式睡眠监测系统及信号处理方法.计算机系统应用,2021,30(12):350-354
LI Wei,MEI Li-Li,LYU Gao-Chong,YU Xin-Ming,JIANG Hui-Na.Mattress Sleep Monitoring System and its Signals Processing.COMPUTER SYSTEMS APPLICATIONS,2021,30(12):350-354