###
计算机系统应用英文版:2021,30(8):22-30
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
融合注意力机制的LSTM期货投资策略
(1.复旦大学 工程与应用技术研究院, 上海 200433;2.复旦大学 智能机器人教育部工程研究中心, 上海 200433;3.复旦大学 大数据学院, 上海 200433;4.复旦大学 上海智能机器人工程技术研究中心, 上海 200433)
Future Investment Strategy Based on LSTM with Attention Mechanism
(1.Academy for Engineering & Technology, Fudan University, Shanghai 200433, China;2.Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai 200433, China;3.School of Data Science, Fudan University, Shanghai 200433, China;4.Shanghai Engineering Research Center of AI&Robotics, Fudan University, Shanghai 200433, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1066次   下载 2277
Received:November 27, 2020    Revised:December 28, 2020
中文摘要: 近年来, 金融量化领域中不断出现基于人工智能算法的量化投资模型, 这些模型试图通过人工智能的方法来对金融时间序列建模, 从而对数据进行预测并构建投资策略. 针对传统的长短时记忆神经网络(Long Short Term Memory, LSTM)对金融时间序列预测不佳的问题, 本文提出一种改进的LSTM模型, 通过在LSTM层加入注意力机制(attention mechanism)提高神经网络的预测效果, 通过遗传算法(Genetic Algorithm, GA)对模型参数调优提高模型泛化能力. 使用2019年1月至2020年5月期间国内股指期货数据, 我们进行了现有最高水平(state-of-the-art)算法间对比实验, 结果显示本文提出的改进的LSTM模型的各方面指标均优于其它模型, 显示了该策略模型应用于期货投资的有效性.
Abstract:In recent years, the quantitative investment models based on artificial intelligence algorithms have been emerging in the field of quantitative finance. These models attempt to model the financial time series through artificial intelligence methods, thereby forecasting data and developing an investment strategy. Regarding the unreliable prediction of the traditional Long Short Term Memory (LSTM) model for financial time series, we propose an improved LSTM model. The attention mechanism is added into the LSTM layer to enhance the forecasting performance of the neural network, and the Genetic Algorithm (GA) is used to optimize parameters, thus improving the model’s generalization ability. The data of China’s stock indexes and futures from the January 2019 to May 2020 is selected for the comparative experiments with state-of-the-art algorithms. The results show that the improved model performs better than other models in every indicators, proving the effect application of the model to future investment.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
李亚峰,王洪波,李晨,王富豪,刘勐,罗静静.融合注意力机制的LSTM期货投资策略.计算机系统应用,2021,30(8):22-30
LI Ya-Feng,WANG Hong-Bo,LI Chen,WANG Fu-Hao,LIU Meng,LUO Jing-Jing.Future Investment Strategy Based on LSTM with Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2021,30(8):22-30