###
计算机系统应用英文版:2021,30(9):295-301
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于潜在低秩表示及导向滤波的红外与可见光图像融合方法
(陕西学前师范学院 数学与统计学院, 西安 710100)
Infrared and Visible Image Fusion Method Based on Latent Low-Rank Representation and Guided Filtering
(School of Mathematics and Statistics, Shaanxi Xueqian Normal University, Xi’an 710100, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 881次   下载 1655
Received:December 16, 2020    Revised:January 18, 2021
中文摘要: 针对红外与可见光图像融合过程中出现的细节损失严重等问题, 提出一种基于潜在低秩表示与导向滤波的红外与可见光图像融合方法. 首先, 采用潜在低秩表示方法将源图像分解为低秩图层和显著图层, 为了更多地提取低秩图层中细节信息, 采用导向滤波将低秩图层分解基础图层和细节图层; 并针对基础图层、细节图层和显著图层的特性, 分别采用视觉显著度加权法、梯度显著度加权法、绝对值最大选择法作为融合规则. 特别地, 为了解决初始权重具有噪声且不与物体边界对齐问题, 采用导向滤波优化初始权重. 最后, 将基础融合图层、细节融合图层和显著融合图层经叠加运算得到融合图像. 通过对比多组融合图像主、客观评价结果表明, 该方法能有效挖掘源图像的细节信息, 在视觉质量和客观评价方法优于其他图像融合方法.
Abstract:This study proposes an infrared and visible image fusion method based on latent low-rank representation and guided filtering to address the serious detail loss and the poor visual quality in the fusion. First of all, the source image is decomposed by latent low-rank representation into low-rank layers and salient layers. Then the low-rank layers are decomposed by guided filtering into basic layers and structural layers with the aim of extracting more structural information from low-rank layers. According to the characteristics of basic layers, structural layers, and salient layers, visual saliency weighting, gradient saliency weighting, and absolute maximum selection are used as fusion rules, respectively. In particular, since the initial weight is noisy and unaligned with the object boundary, it is optimized by guided filtering. Finally, the basic fusion layer, the structural fusion layer, and the salient fusion layer are overlapped to yield the fused image. The subjective and objective evaluation results of several groups of fused images are compared. The proposed method is found able to effectively extract the detail information of source images and superior to other image fusion methods in terms of visual quality and objective evaluation.
文章编号:     中图分类号:    文献标志码:
基金项目:陕西省教育厅科学研究计划(20JK0585); 陕西学前师范学院科研基金(2020YBKJ19)
引用文本:
朱亚辉.基于潜在低秩表示及导向滤波的红外与可见光图像融合方法.计算机系统应用,2021,30(9):295-301
ZHU Ya-Hui.Infrared and Visible Image Fusion Method Based on Latent Low-Rank Representation and Guided Filtering.COMPUTER SYSTEMS APPLICATIONS,2021,30(9):295-301