###
计算机系统应用英文版:2021,30(9):161-170
本文二维码信息
码上扫一扫!
基于元学习的小样本数据生成算法
(1.中国石油大学(华东) 计算机科学与技术学院, 青岛 266580;2.青岛海尔空调电子有限公司, 青岛 266103;3.北京超算科技有限公司, 北京 100089)
Small Sample Data Generation Algorithm Based on Meta Learning
(1.College of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China;2.Qingdao Haier Air Conditioning Electronics Co. Ltd., Qingdao 266103, China;3.Beijing Supcompute Technology Co. Ltd., Beijing 100089, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1242次   下载 2490
Received:December 01, 2020    Revised:December 28, 2020
中文摘要: 小样本数据存在信息不充足、不完备等问题, 缺乏对总体的代表性, 导致数据驱动的相关算法精度下降. 本文针对小样本问题, 提出基于元学习的生成式对抗网络算法进行小样本数据的数据生成. 该算法目标是在各种数据生成任务上训练, 确定模型最优初始化参数, 从而仅使用较少的训练样本解决新的数据生成任务. 本文利用水冷磁悬浮机组数据进行数据生成, 实验表明, 本算法能够在样本不足的条件下确定最优初始化参数, 降低了对数据集大小的要求. 本文同时进行了真实数据与生成数据混合的故障分类实验, 验证了生成数据具有较好的真实性, 对故障诊断分析具有较大的帮助.
Abstract:Small-sample problems are common challenges for training models. Because small sample data with insufficient information fails to represent the whole dataset, the data-driven models will have lower accuracy. This study proposes a Generative Adversarial Network (GAN) algorithm based on meta-learning for small sample data. It aims to train a generative adversarial network on various data generation tasks and find the optimal initialization parameters of the model. Consequently, new data generation tasks can be tackled with fewer training samples. The algorithm is applied to a water-cooled maglev unit for data generation. Experiments show that the algorithm can find the optimal initialization parameters under the condition of insufficient samples, which reduces the requirement for the dataset size. The failure classification experiment of mixed data verifies that the generated data is authentic, which is helpful for failure diagnosis and analysis.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(62072469)
引用文本:
王新哲,于泽沛,时斌,包致成,钱华山,赵永俊.基于元学习的小样本数据生成算法.计算机系统应用,2021,30(9):161-170
WANG Xin-Zhe,YU Ze-Pei,SHI Bin,BAO Zhi-Cheng,QIAN Hua-Shan,ZHAO Yong-Jun.Small Sample Data Generation Algorithm Based on Meta Learning.COMPUTER SYSTEMS APPLICATIONS,2021,30(9):161-170