本文已被:浏览 899次 下载 2659次
Received:November 29, 2020 Revised:January 04, 2021
Received:November 29, 2020 Revised:January 04, 2021
中文摘要: 对于具有长、短期的时间关联性、非线性和非平稳性等特点的时序数据, 传统时序预测模型对此类数据的预测效果不佳. 为进一步提高时序预测模型的准确率和效率, 考虑时域卷积提取时间特征的有效性, 以及残差结构加快模型收敛的优越性, 同时考虑注意力机制对参数的强化作用, 提出了一种融合时域卷积、残差结构和注意力机制的时序预测模型(Attention Temporal Convolutional Neural Network, A-TCNN). 首先, 通过多层残差时域卷积层提取时序数据的长、短期特征; 其次, 通过注意力机制加强对输出影响较大的参数的权重; 最后, 通过一个全连接层得到输出结果. 在实际医院流水的数据集上, 与常规网络对比, 比较多种多步预测策略. 实验结果表明, 该模型与常规模型相比具有更好的预测精度和效率.
Abstract:Traditional time series forecasting models perform poorly in forcasting the time series data with long-term and short-term time relevance, nonlinearity and non-stationarity. To improve the accuracy and efficiency of the time series forecasting model, this study proposed a time series forecasting model (Attention Temporal Convolutional Neural Network, A-TCNN) combining temporal convolution, residual structure, and the attention mechanism. The model considers the efficiency of temporal convolution to extract temporal features, the superiority of residual structure to accelerate model convergence, and the strengthening effect of the attention mechanism on the parameters. Firstly, the long-term and short-term features are extracted from the data through multiple residual temporal convolutional layers; secondly, the weight of the parameters that have a greater impact on the output is strengthened through the attention layers; finally, the output result is obtained through a fully connected layer. On the dataset of actual hospital finance, a variety of multi-step prediction strategies are compared with those in conventional networks. The experimental results show that this model has higher prediction accuracy and efficiency compared with conventional models.
文章编号: 中图分类号: 文献标志码:
基金项目:浙江省公益技术研究项目(LGG20F030007)
引用文本:
孙思宇,张标标,吴俊宏,马仕强,任佳.融合时域卷积、残差结构和注意力机制的时序预测.计算机系统应用,2021,30(9):145-151
SUN Si-Yu,ZHANG Biao-Biao,WU Jun-Hong,MA Shi-Qiang,REN Jia.Time Series Forecasting Combining Temporal Convolution, Residual Structure and Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2021,30(9):145-151
孙思宇,张标标,吴俊宏,马仕强,任佳.融合时域卷积、残差结构和注意力机制的时序预测.计算机系统应用,2021,30(9):145-151
SUN Si-Yu,ZHANG Biao-Biao,WU Jun-Hong,MA Shi-Qiang,REN Jia.Time Series Forecasting Combining Temporal Convolution, Residual Structure and Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2021,30(9):145-151