###
计算机系统应用英文版:2021,30(8):171-178
本文二维码信息
码上扫一扫!
基于柯西分布的深度哈希跨媒体检索
(1.东北石油大学 计算机与信息技术学院, 大庆 163318;2.中国石油天然气股份有限公司 冀东油田分公司, 唐山 063004)
Cross-Media Retrieval of Deep Hash Based on Cauchy Distribution
(1.School of Computer & Information Technology, Northeast Petroleum University, Daqing 163318, China;2.Jidong Oilfield Branch, Petro China Co. Ltd., Tangshan 063004, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 884次   下载 1631
Received:November 20, 2020    Revised:December 21, 2020
中文摘要: 针对深度哈希跨媒体检索方法中, 语义相似的媒体对象的哈希码在汉明空间内的分布不合理问题, 提出了一种新的深度哈希跨媒体检索模型. 该模型是在汉明空间内利用柯西分布对现有的深度哈希跨媒体关联损失进行改进, 使得语义相似的媒体对象哈希码距离较小, 语义不相似的媒体对象哈希码较大, 进而提高模型的检索效果. 同时, 本文给出了一种高效的模型求解方法, 采用交替迭代方式获得模型的近似最优解. 在Flickr-25k数据集, IAPR TC-12数据集和MS COCO数据集上的实验结果表明, 该方法可以有效的提高跨媒体检索性能.
Abstract:This study proposes a new cross-media retrieval model of deep hash to solve the unreasonable distribution of the hash codes of semantically similar media objects in Hamming space in the existing retrieval methods. In this model, the cross-media association loss of deep hash is improved by the Cauchy distribution in Hamming space, making the hash codes of semantically similar media objects in a short distance and those of semantically dissimilar ones far apart. Thus, the retrieval effect of the model is improved. Furthermore, an efficient model-solving method is presented in this study, and the approximate optimal solution of the model is obtained by alternating iteration. The experimental results on Flickr-25k, IAPR TC-12, and MS COCO datasets show that this method can effectively improve the performance of cross-media retrieval.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61502094,61702093);中央支持地方高校改革发展资金人才培养支持计划(140119001);黑龙江省省属本科高校基本科研业务费项目(KYCXTD201903);黑龙江省高等教育教学改革研究项目(SJGY20180079,SJGY20190098);东北石油大学引导性创新基金(2020YDL-11)
引用文本:
田枫,李闯,刘芳,李婷玉,张蕾,刘志刚.基于柯西分布的深度哈希跨媒体检索.计算机系统应用,2021,30(8):171-178
TIAN Feng,LI Chuang,LIU Fang,LI Ting-Yu,ZHANG Lei,LIU Zhi-Gang.Cross-Media Retrieval of Deep Hash Based on Cauchy Distribution.COMPUTER SYSTEMS APPLICATIONS,2021,30(8):171-178