###
计算机系统应用英文版:2021,30(6):176-183
本文二维码信息
码上扫一扫!
基于LSTM与距离优化的兴趣点推荐方法
(中国石油大学(华东) 计算机科学与技术学院, 青岛 266580)
Point of Interest Recommendation Method Based on LSTM and Distance Optimization
(College of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 948次   下载 2059
Received:October 15, 2020    Revised:November 18, 2020
中文摘要: 现有的兴趣点(POI)推荐方法以基于位置的社交网络为准, 通过用户个人的兴趣点访问频率以及其关系者的访问习惯进行推荐, 而兴趣点的地理位置也作为推荐的考虑条件之一. 但大部分的兴趣点推荐仅仅将兴趣点的地理位置作为推荐的偏好参考, 而非用户本身到达该兴趣点的代价, 所以基于类似方法所产生的某些兴趣点候选项可能符合用户偏好, 但其可达性并不好. 针对上述问题, 本文提出了一种基于LSTM与距离优化的兴趣点推荐方法. 该方法首先根据用户的社交关系网信息对用户与兴趣点的交互矩阵进行补充, 然后对此矩阵进行分解生成兴趣点隐向量. 最后, 以用户的兴趣点访问记录为依据建立兴趣点隐向量之间的时序关系, 并且以类递归形式的模型对序列进行学习, 推断出用户未来可能访问的兴趣点序列. 本文使用Gowalla和Yelp数据集对模型的性能进行验证, 发现在有限的信息维度下, 该模型的推荐准确率与其它代表性推荐模型相比有略微的提升, 且所生成的兴趣点序列对当前用户具有较好的可达性.
Abstract:The existing Point Of Interest (POI) recommendation method operates based on the POI access frequency of an individual user and the access habits of his/her partakers in the location-based social network, with the geographical location of the POI as one of the recommendation conditions. However, most of the POI recommendations only take the geographical location of POI as the preferential reference, rather than the access cost of the users. Therefore, some of the POI candidates generated based on similar methods may meet the user preference but have poor accessibility. To solve the above problems, this study proposes a POI recommendation method based on LSTM and distance optimization. This method supplements the interaction matrix between a user and POI according to the user’s social network and then decomposes the matrix into the hidden vectors of the POI. Finally, according to the user’s POI access record, the temporal relationship between the hidden vectors is established, and the sequence is learned in a recursion-like model to infer the possible POI sequence accessed by the user in the future. In addition, experiments on the Gowalla and Yelp data sets demonstrate that in the limited data dimension, the proposed method has slightly higher recommendation accuracy than other representative models and can generate POI sequence easily accessed by current users.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(62072469); 国家重点科研计划(2018YFE0116700); 山东省自然科学基金(ZR2019MF049); 中央高校基础研究基金(2015020031); 西海岸人工智能技术创新中心建设专项(2019-1-5, 2019-1-6); 上海可信工业控制平台开放项目(TICPSH202003015-ZC)
引用文本:
张大千,尹广楹.基于LSTM与距离优化的兴趣点推荐方法.计算机系统应用,2021,30(6):176-183
ZHANG Da-Qian,YIN Guang-Ying.Point of Interest Recommendation Method Based on LSTM and Distance Optimization.COMPUTER SYSTEMS APPLICATIONS,2021,30(6):176-183