###
计算机系统应用英文版:2021,30(7):184-189
本文二维码信息
码上扫一扫!
基于编解码网络的人脸对齐和重建算法
(福建师范大学 光电与信息工程学院, 福州 350007)
Face Alignment and Reconstruction Based on Encoder-Decoder Network
(College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 738次   下载 1517
Received:November 04, 2020    Revised:December 02, 2020
中文摘要: 针对现有的三维人脸重建模型复杂度较高和对多种人脸姿态重建效果不佳的问题, 本文提出了一种可以在不同人脸姿态条件下, 有效地实现人脸对齐并从单张二维人脸图片重建出三维人脸的卷积神经网络. 首先设计了由密集卷积网络模块和转置卷积模块构成的编解码网络, 并在损失函数中引入图像结构相似度评价, 构造新的损失函数, 通过训练神经网络得出模型, 模型实现了人脸对齐和三维人脸重建任务. 在AFLW2000-3D数据集上验证性能, 实验表明该网络有效提升了人脸对齐和人脸重建的效果.
Abstract:The existing 3D face reconstruction models have the problems of high complexity and poor reconstruction accuracy of multiple face poses. For these reasons, we propose a convolutional neural network that can effectively achieve face alignment and reconstruct a 3D face from a single face picture in the case of a variety of face poses. First, we design an encoder-decoder network composed of a DenseNet module and a deconvolution module. The evaluation of image Structural SIMilarity (SSIM) is introduced into the loss function to construct a new loss function. Then, we train the neural network to get a model, which implements face alignment and 3D face reconstruction tasks. Experiments on the ALFW2000-3D dataset show that the proposed network effectively improves the accuracy of face alignment and reconstruction.
文章编号:     中图分类号:    文献标志码:
基金项目:福建省教育厅资助项目(JAT170128)
引用文本:
曾远强,蔡坚勇,章小曼,卢依宏.基于编解码网络的人脸对齐和重建算法.计算机系统应用,2021,30(7):184-189
ZENG Yuan-Qiang,CAI Jian-Yong,ZHANG Xiao-Man,LU Yi-Hong.Face Alignment and Reconstruction Based on Encoder-Decoder Network.COMPUTER SYSTEMS APPLICATIONS,2021,30(7):184-189