本文已被:浏览 793次 下载 1566次
Received:November 12, 2020 Revised:December 12, 2020
Received:November 12, 2020 Revised:December 12, 2020
中文摘要: 以学校一卡通交易流水数据为研究对象, 挖掘出令管理层感兴趣的信息, 为学校决策管理提供科学依据. 把食堂2014年1月至2019年2月的消费数据作为研究对象, 通过平滑消除数据噪音, 分别建立ARIMA模型和Holt-Winters乘法模型, 将月数据组成的离散型时间序列进行拟合分析, 并对2019年3月至5月份的消费趋势进行了预测, 最后用实际值来检测预测结果. 实验证明, Holt-Winters模型对消费数据的拟合效果较好, 预测精度更高. 应用合适的数学模型对一卡通中饭堂消费的数据进行分析、拟合、预测, 有助于全面掌握师生的食堂消费行为规律, 可为后勤部门优化资源配置和科学决策提供依据.
中文关键词: Holt-Winters乘法模型 ARIMA 拟合分析 预测 数据挖掘
Abstract:The transaction flow data of campus cards is studied to mine the interesting information to provide scientific basis for decision management. According to the consumption data of all canteens from January 2014 to February 2019, the Holt-Winters multiplication model and the ARIMA model are built with noise canceled by smoothing. The discrete time series composed of monthly data during this period is fitted and analyzed; the consumption trends in March to May 2019 are forecasted, the results of which are tested by actual values. The experiment shows that the Holt-Winters model can well fit the consumption data at higher forecast accuracy. Our method is helpful to master the consumption behavior of teachers and students in the canteens and lays the groundwork for logistics departments to optimize resource allocation and scientific decision-making.
文章编号: 中图分类号: 文献标志码:
基金项目:肇庆市科技计划(201904030410);广东省气象局科学技术研究项目(GRMC2018M52)
Author Name | Affiliation | |
HUANG Tian-Wen | Zhaoqing Meteorological Bureau of Guangdong Province, Zhaoqing 526060, China | |
JIAO Fei | Zhaoqing University, Zhaoqing 526061, China | jfbbjf@163.com |
Author Name | Affiliation | |
HUANG Tian-Wen | Zhaoqing Meteorological Bureau of Guangdong Province, Zhaoqing 526060, China | |
JIAO Fei | Zhaoqing University, Zhaoqing 526061, China | jfbbjf@163.com |
引用文本:
黄天文,焦飞.基于ARIMA和Holt-Winters的消费行为预测.计算机系统应用,2021,30(8):300-304
HUANG Tian-Wen,JIAO Fei.Consumption Behavior Forecast Based on ARIMA and Holt-Winters.COMPUTER SYSTEMS APPLICATIONS,2021,30(8):300-304
黄天文,焦飞.基于ARIMA和Holt-Winters的消费行为预测.计算机系统应用,2021,30(8):300-304
HUANG Tian-Wen,JIAO Fei.Consumption Behavior Forecast Based on ARIMA and Holt-Winters.COMPUTER SYSTEMS APPLICATIONS,2021,30(8):300-304