###
计算机系统应用英文版:2021,30(7):150-157
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于Logistic混沌映射优化的君主蝶优化算法
(宁波大学科学技术学院, 宁波 315300)
Monarchs Butterfly Optimization Algorithm Based on Logistic Chaotic Map Optimization
(College of Science and Technology Ningbo University, Ningbo 315300, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 899次   下载 1964
Received:November 05, 2020    Revised:December 12, 2020
中文摘要: 君主蝶优化算法(Monarch Butterfly Optimization, MBO)是2015年提出的一种模拟君主蝶的迁徙行为的元启发式算法. 通过对MBO的研究发现其在处理高维问题时易陷入局部最优与迁移算子产生的子代受父代影响过大的问题, 本文提出新算法, Logistic混沌映射君主蝶优化算法(Monarch Butterfly Optimization with Logistic Chaotic Map, LCMMBO), 使用Logistic混沌映射扰动最优解以增强其跳出局部最优的能力, 优化了迁移算子中子代传递的方式以增强其全局搜索的能力. 通过仿真实验发现其在处理高维的优化问题时表现出良好的性能, 不仅鲁棒性优异, 而且跳出局部最优的能力强.
中文关键词: 君主蝶优化算法  高维  混沌映射
Abstract:Monarch Butterfly Optimization (MBO) is a meta-heuristic algorithm proposed in 2015 to simulate the migration behavior of monarch butterflies. There are two problems in the MBO algorithm when dealing with high-dimensional problems: It is easy to fall into local optimum, and the offspring generated by migration operators are greatly influenced by their parents. For these reasons, we propose a new algorithm, Monarch Butterfly Optimization with a Logistic Chaotic Map (LCMMBO). It uses a Logistic chaotic map to disturb the optimal solution and optimizes the offspring transfer mode in the migration operators. These operations respectively aim to enhance the ability to jump out of the local optimum and the ability of global search. The simulation results show that, in the case of handling high-dimensional optimization problems, the new algorithm enjoys excellent robustness and a strong ability to jump out of the local optimum.
文章编号:     中图分类号:    文献标志码:
基金项目:宁波市自然科学基金(202003N4159);国家级大学生创新创业训练计划(202013277008)
引用文本:
倪龙雨,符强,吴沧辰.基于Logistic混沌映射优化的君主蝶优化算法.计算机系统应用,2021,30(7):150-157
NI Long-Yu,FU Qiang,WU Cang-Chen.Monarchs Butterfly Optimization Algorithm Based on Logistic Chaotic Map Optimization.COMPUTER SYSTEMS APPLICATIONS,2021,30(7):150-157