###
计算机系统应用英文版:2021,30(7):172-177
本文二维码信息
码上扫一扫!
融合多种策略的改进粒子群算法
(中国市政工程中南设计研究总院有限公司, 武汉 430010)
Improved Particle Swarm Optimization Integrating Multiple Strategies
(Central & Southem China Municipal Engineering Design and Research Institute Co. Ltd., Wuhan 430010, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1010次   下载 4519
Received:October 21, 2020    Revised:November 18, 2020
中文摘要: 为有效解决粒子群优化算法(Particle Swarm Optimization, PSO)容易陷入局部极值及进化后期收敛速度慢、精度低等缺点, 提出了一种融合多种策略的改进粒子群算法(Improved Particle Swarm Optimization, IPSO). 该算法包括以下4点改进:(1)采取分组控制策略, 按适应度值将种群分为优解组和劣解组, 优解组进行遗传交叉操作, 劣解组进行变异操作; (2)精英策略用来更新种群, 根据适应度值从经过交叉和变异操作后的种群及初始种群中选出前一半粒子作为新种群; (3)改进粒子学习模式, 充分利用种群信息, 以优良种群的均值代替个体最优位置; (4)引入概率控制来控制算法进入交叉和变异操作的概率. 测试函数的仿真结果表明, 与标准PSO及其改进算法相比, IPSO算法能有效兼顾全局探索和局部挖掘能力, 具有收敛速度快、求解精度高、避开局部最优解的优点.
Abstract:Particle Swarm Optimization (PSO) can easily fall into the local extremum and has slow convergence and low precision in the late evolution. For these reasons, we propose an Improved Particle Swarm Optimization (IPSO) algorithm that integrates multiple strategies. It includes the following four improvements. Firstly, the grouping strategy is adopted. According to the fitness values, the population is divided into an optimal particle group and an inferior particle group, which are subject to crossover and mutation operations, respectively. Secondly, the elite strategy is used to update the population. The first 50% particles are selected from the population after crossover and mutation operations and the initial population according to fitness values and taken as a new population. Thirdly, the particle learning mode is improved to make full use of the population information. The particle best is replaced with the mean of the optimal particle group. Fourthly, probability control is introduced to control the probability of the algorithm’s entering crossover and mutation operations. The simulation results of the test functions show that compared with the standard PSO and its improved variants, the IPSO algorithm can effectively take into account the global exploration and local mining capabilities, and has the advantages of fast convergence, high accuracy, and avoidance from the local optimal solution.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
胡佳.融合多种策略的改进粒子群算法.计算机系统应用,2021,30(7):172-177
HU Jia.Improved Particle Swarm Optimization Integrating Multiple Strategies.COMPUTER SYSTEMS APPLICATIONS,2021,30(7):172-177