###
计算机系统应用英文版:2021,30(6):184-190
本文二维码信息
码上扫一扫!
基于多元因素的Bi-LSTM高速公路交通流预测
(1.长安大学 信息工程学院, 西安 710054;2.绍兴市交通建设有限公司, 绍兴 312000)
Bi-LSTM Expressway Traffic Flow Prediction Based on Multiple Factor Data
(1.School of Information Engineering, Chang’an University, Xi’an 710064, China;2.Shaoxing City Transportation Construction Co. Ltd., Shaoxing 312000, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1032次   下载 3592
Received:October 16, 2020    Revised:November 18, 2020
中文摘要: 针对影响高速公路交通流量因素多样而复杂的问题, 提出了一种基于多元因素的Bi-LSTM (双向长短期记忆网络)高速公路交通流预测模型. 首先对原始数据进行清理和相关性分析, 提高研究准确性, 降低数据维度; 其次, 基于时间滑动窗口, 构建多元因素交通流时序矩阵, 并以MAERMSE为评估指标, 训练优化Bi-LSTM交通流预测模型. 本模型同时考虑了天气状况、节假日、收费情况等高相关度影响因素, 及交通流前序、后序变化的影响. 以陕西省高速公路收费数据为实验对象, 结果表明: 与GRU和LSTM两种神经网络相比较, 本模型在高速公路短期交通流预测中的适用性更强、精确度更高.
中文关键词: LSTM  GRU  Bi-LSTM  交通流  多元因素
Abstract:Aiming at the diverse and complex factors affecting expressway traffic flow, this study proposes a Bi-LSTM prediction model based on multiple factors. Firstly, the original data are cleaned up and analyzed with respect to their correlation to improve the research accuracy and reduce the data dimension. Secondly, a multi-factor time series matrix for traffic flow is constructed based on the time sliding window and the proposed model is trained and optimized with MAE and RMSE as the evaluation indicators. This model considers high-correlation influencing factors such as weather conditions, holidays, and toll, as well as changes in the preorder and postorder of traffic flow. With the expressway toll data in Shaanxi Province as the object, the results show that the proposed model is more applicable and accurate than GRU and LSTM in the short-term prediction of expressway traffic flow.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划(2020YFB1600400); 陕西省重点研发计划(2019ZDLGY17-08); 浙江省交通运输厅科技计划(2020026)
引用文本:
张维,袁绍欣,陶建军,周晨蓉,阿合提·杰恩斯.基于多元因素的Bi-LSTM高速公路交通流预测.计算机系统应用,2021,30(6):184-190
ZHANG Wei,YUAN Shao-Xin,TAO Jian-Jun,ZHOU Chen-Rong,JIEENSI A-He-Ti.Bi-LSTM Expressway Traffic Flow Prediction Based on Multiple Factor Data.COMPUTER SYSTEMS APPLICATIONS,2021,30(6):184-190