###
计算机系统应用英文版:2021,30(5):143-149
本文二维码信息
码上扫一扫!
基于多时间尺度的电动汽车充电过程故障在线预警方法
(1.国网青海省电力公司 西宁电动汽车服务分公司, 西宁 810008;2.国电南瑞南京控制系统有限公司, 南京 210023)
On-Line Early Warning Method for Electric Vehicle Charging Process Faults Based on Multiple Time Scales
(1.Xining Electric Vehicle Service Branch, Qinghai Electric Power Company, State Grid, Xining 810008, China;2.Guodian NARI Nanjing Control System Co. Ltd., Nanjing 210023, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 887次   下载 2751
Received:August 28, 2020    Revised:September 23, 2020
中文摘要: 为了保障新能源车辆的安全、平稳运行, 并且缓解环境危机, 加速开发和推广应用新能源车辆, 分析单体电池基本性能, 为了准确清晰的表征电池电压的变化趋势, 采用“电压差归一化曲线”来进行分析动力电池组安全特性, 以短期和中长期不同时间尺度为依据制定电动汽车充电过程故障在线预警控制策略, 主要研究了电池充电温升因素影响下的中长期充电预警控制策略, 并建立目标函数, 利用遗传算法进行优化控制, 最后利用充电桩监控平台提供的充电状态信息数据, 对所提出的基于电池模型的充电设施充电数据在线预警进行了验证.
Abstract:In order to ensure the safe and smooth operation of new energy vehicles, accelerate their development and promotion, and alleviate the environmental crisis, we adopt a “normalized voltage difference curve” to analyze the safety features of power battery packs. Furthermore, we formulate the control strategies of online early warning about faults in the charging process of electric vehicles on the short-term and mid-long-term scales. Thus, the basic performance of single batteries is analyzed and the trend in battery voltage can be accurately and clearly characterized. In this study, we mainly investigate the early warning control strategies of mid-long-term charging affected by the temperature rise in battery charging. Then, an objective function is established and the genetic algorithm is used for optimal control. Finally, the data about the charging status provided by the charging-pile monitoring platform verify the proposed online early warning of the charging data based on the battery model.
文章编号:     中图分类号:    文献标志码:
基金项目:青海省电力公司科技项目(5228011900RQ)
引用文本:
芮光辉,张明浩,魏廷云,汪映辉,石进永.基于多时间尺度的电动汽车充电过程故障在线预警方法.计算机系统应用,2021,30(5):143-149
RUI Guang-Hui,ZHANG Ming-Hao,WEI Ting-Yun,WANG Ying-Hui,SHI Jin-Yong.On-Line Early Warning Method for Electric Vehicle Charging Process Faults Based on Multiple Time Scales.COMPUTER SYSTEMS APPLICATIONS,2021,30(5):143-149