###
计算机系统应用英文版:2021,30(4):9-16
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于时序分析的阀冷进阀温度预测方法
(1.中国南方电网有限责任公司超高压输电公司 广州局, 广州 510663;2.南京南瑞继保电气有限公司, 南京 211106;3.南京航空航天大学, 南京 210016)
Prediction of Inlet Valve Temperature Based on Time Series Analysis
(1.Guangzhou Bureau, CSG EHV Power Transmission Company, Guangzhou 510663, China;2.NR Electric Co. Ltd., Nanjing 211106, China;3.Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1082次   下载 2175
Received:August 25, 2020    Revised:September 15, 2020
中文摘要: 电网在运行过程中, 换流阀等关键设备会不断产生热量, 当设备的热量不断聚集温度不断上升, 会影响设备的稳定性和安全性, 保证换流阀等关键设备稳定运行就显得至关重要. 阀冷系统作为冷却系统的关键设备, 以热导性较高的水为介质, 将设备的热能带出, 达到降低设备温度的目的. 可以通过监控冷却水的温度、压力技术指标来确保换流阀安全、稳定运行. 选取阀冷系统中的进阀温度为主要预测指标, 对系统的历史数据进行充分的挖掘和分析, 达到对电网运行状态预估的目的. 将传统时序模型与机器学习结合提出ARIMA-SVM的混合模型, 并与传统的 ARIMA 模型、SVM模型和GRU神经网络模型对中国南方电网的真实阀冷数据进行时序分析预测并进行对比实验. 实验结果表明, ARIMA模型、SVM模型、GRU神经网络模型和ARIMA-SVM混合模型都可以较好地预测进阀温度的变化趋势, 但ARIMA-SVM混合模型在均方根误差、均方误差和平均绝对误差3个评价指标上表现均更优于其他3个模型, 能够进一步提升进阀温度预测的精度
Abstract:During the operation of the power grid, key devices such as converter valves continue to generate heat, affecting the stability and safety of the system. Then it is crucial to ensure the stable operation of those devices. As a major component in the cooling system, the valve cooling system releases the heat energy from the equipment with water of high thermal conductivity as the medium. The stable operation of the converter valve can be ensured by monitoring the temperature and pressure of the cooling water. Also, with inlet valve temperature in the valve cooling system as the main predictive index, the historical data of the system is fully mined for predicting the operating state of the power grid. An ARIMA-SVM hybrid model integrating the traditional time series model and machine learning is compared with the traditional ARIMA model, the SVM model and the GRU neural network model with regard to the time series analysis of the real valve cooling data from China Southern Power Grid. The comparative experimental results demonstrate that the above four models can all clearly indicate the trend of the inlet valve temperature. However, the ARIMA-SVM hybrid model behaves better in the evaluation indicators including the root mean square error, the mean square error and the mean absolute error than the other three, with a more accurate prediction of inlet valve temperature.
文章编号:     中图分类号:    文献标志码:
基金项目:江苏高校“青蓝工程”; 中央高校基本科研业务项目(NS2019055)
引用文本:
张朝辉,梁家豪,梁秉岗,秦冠军,尹毅然,丁笠,周宇.基于时序分析的阀冷进阀温度预测方法.计算机系统应用,2021,30(4):9-16
ZHANG Chao-Hui,LIANG Jia-Hao,LIANG Bing-Gang,QIN Guan-Jun,YIN Yi-Ran,DING Li,ZHOU Yu.Prediction of Inlet Valve Temperature Based on Time Series Analysis.COMPUTER SYSTEMS APPLICATIONS,2021,30(4):9-16