###
计算机系统应用英文版:2021,30(3):262-266
本文二维码信息
码上扫一扫!
自编码器在水质监测点位优化中的应用
(1.中国科学院 沈阳计算技术研究所, 沈阳 110168;2.中国科学院大学, 北京 100049;3.阜新市生态环境保护服务中心, 阜新 123100;4.辽宁省医疗器械检验检测院, 沈阳 110000)
Application of Auto-Encoder in Optimization of Water Quality Monitoring Points
(1.Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.Fuxin Ecological Environmental Protection Service Center, Fuxin 123100, China;4.Liaoning Medical Device Test Institute, Shenyang 110000, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 810次   下载 1496
Received:July 25, 2020    Revised:August 19, 2020
中文摘要: 水是我们人类赖以生存的必要元素之一, 水质的监测结果是进行水质量控制的依据. 在一个区域或者流域内就有很多水质监测点位, 随着人口增长、工业发展、土壤变更, 整个流域发生了很大的改变. 原来的点位就存在误选或者偏多、重复性的问题, 就需要采取一些措施, 尽量用少的点位全面的表现水质的分布, 节约人力, 物力. 为了解决这一问题, 本文所提出了一种将auto-encoder神经网络结合系统聚类的方法, 用auto-encoder对输入的样本进行特征选取, 将特征降维后而重新生成的新样本进行聚类, 达到了水质监测点位优化的目的. 实验表明, 相比于单独使用模糊聚类方法, 而不进行特征降维的方法, 此方法有一定的效果.
Abstract:Water is one of the necessary elements for our human survival, and the results of water quality monitoring are the basis for water quality control. In a region or watershed, many water quality monitoring points can be found in a region or watershed. With population growth, industrial development, and soil variety, water environment has undergone drastic changes, and some points may be wrongly, overly, or repetitively selected. As for this, resource-saving measures need to be taken to comprehensively show the distribution of water quality with as few points as possible. In this study, a method that combines auto-encoder neural network with hierarchical clustering is proposed. This method uses auto-encoder for feature selection of input samples and analyzes the samples after feature dimensionality reduction through hierarchical clustering, optimizing water quality monitoring points. The experiment results show that the method is more effective as opposed to the method of fuzzy clustering without feature dimensionality reduction.
文章编号:     中图分类号:    文献标志码:
基金项目:国家水体污染控制与治理科技重大专项(2018ZX07601001)
引用文本:
张镝,吕言成,张楠,魏景锋.自编码器在水质监测点位优化中的应用.计算机系统应用,2021,30(3):262-266
ZHANG Di,LYU Yan-Cheng,ZHANG Nan,WEI Jing-Feng.Application of Auto-Encoder in Optimization of Water Quality Monitoring Points.COMPUTER SYSTEMS APPLICATIONS,2021,30(3):262-266