###
计算机系统应用英文版:2021,30(3):142-150
本文二维码信息
码上扫一扫!
基于人工蜂群算法的混沌系统参数估计
(1.集美大学 轮机工程学院, 厦门 361021;2.福建省船舶与海洋重点实验室, 厦门 361021)
Artificial Bee Colony Algorithm in Parameter Estimation of Chaotic Systems
(1.School of Marine Engineering, Jimei University, Xiamen 361021, China;2.Fujian Province Key Laboratory of Naval Architecture and Marine Engineering, Xiamen 361021, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 832次   下载 1553
Received:July 18, 2020    Revised:August 13, 2020
中文摘要: 为了更准确的估计混沌系统的未知参数, 提出了一种基于人工蜂群算法的混沌系统参数辨识方法, 该方法将混沌系统中参数估计转化为多维变量的函数优化问题, 利用搜索方程对多维空间变量进行充分搜索, 通过优化人工蜂群算法计算估计值与真值之间的均方差, 从而估计出混沌系统的参数. Lorenz混沌系统的参数辨识仿真实验结果表明了该方法的可行性, 并且算法收敛速度快, 估计精度高.
Abstract:In order to estimate the unknown parameters of the chaotic systems more accurately, we propose a method for the parameter estimation of chaotic systems based on the artificial bee colony algorithm. This method converts the parameter estimation of chaotic systems to the function optimization problem of a multi-dimensional variable and then uses a search equation to fully search the multi-dimensional spatial variable. Furthermore, the optimized artificial bee colony algorithm is applied to calculate the mean square error between the estimated value and the true value, so as to realize the parameter estimation in the chaotic systems. In addition, the results of parameter estimation simulation of the Lorenz chaotic system indicate the feasibility of the proposed method. Besides, the improved algorithm has fast convergence and high estimation accuracy.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(51879118); 福建省高等学校新世纪优秀人才支持计划(B17159); 福建省科技拥军项目(B19101); 农业部渔业装备与工程技术重点实验室基金(2016002, 2018001); 人工智能四川省重点实验室基金(2017RJY02); 江苏省输配电装备技术重点实验室项目(2017JSSPD01)
引用文本:
刘文霞,王荣杰,韩冉,郜怀通.基于人工蜂群算法的混沌系统参数估计.计算机系统应用,2021,30(3):142-150
LIU Wen-Xia,WANG Rong-Jie,HAN Ran,GAO Huai-Tong.Artificial Bee Colony Algorithm in Parameter Estimation of Chaotic Systems.COMPUTER SYSTEMS APPLICATIONS,2021,30(3):142-150