###
计算机系统应用英文版:2021,30(2):77-82
本文二维码信息
码上扫一扫!
面向硬件加速的通用图像卷积实验平台
(福建师范大学 协和学院 信息技术系, 福州 350003)
Hardware Acceleration Oriented General Experiment Platform of Image Convolution
(Faculty of Information Technology, Concord College, Fujian Normal University, Fuzhou 350003, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 662次   下载 1832
Received:June 15, 2020    Revised:July 15, 2020
中文摘要: FPGA因具有较好的并行处理能力和灵活性, 使其在卷积神经网络硬件加速计算中得到广泛的应用, 但是传统的FPGA图像卷积实现中存在模块化设计以及空间开销较大的问题. 本文提出了一种面向硬件加速的通用图像卷积开发平台. 通过模块化设计, 极大提高针对不同卷积核实现图像卷积开发的灵活性; 另外通过图像批次处理技术, 充分利用数据重复性实现内存共享, 较好地降低了存储空间的开销. 实验结果表明, 本文设计的平台在模块化设计方面提供了更好的可重配置架构, 非常适于实验教学应用; 在存储空间需求方面, 当并行度提高时, BRAM的复杂度只是线性增加, 这对于功耗的降低具有优势.
中文关键词: FPGA  硬件加速  图像卷积  并行度
Abstract:With fine parallel processing capability and flexibility, Field Programmable Gate Array (FPGA) has been widely applied to hardware-accelerated computation, especially in Convolution Neural Networks (CNN). However, traditional image convolution on FPGA has limited modular design and large space overhead. This study builds a general experiment platform of image convolution for hardware acceleration. Through the modular design, it greatly improves the flexibility in image convolution for different convolution kernels. In addition, an image batch-processing system is adopted to enable memory sharing due to data repetition, reducing the need for storage space. Experimental results present that the proposed platform boasts a better reconfigurable architecture in terms of modular design. Besides, the complexity of BRAM only increases linearly with higher parallelism, which has the advantage of reducing power consumption.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61201216); 福建省教师教育科研项目(JAT191117); 泉州市科技计划(2017T009); 福建师范大学协和学院科研基金(KY20200202)
引用文本:
阚保强.面向硬件加速的通用图像卷积实验平台.计算机系统应用,2021,30(2):77-82
KAN Bao-Qiang.Hardware Acceleration Oriented General Experiment Platform of Image Convolution.COMPUTER SYSTEMS APPLICATIONS,2021,30(2):77-82