###
计算机系统应用英文版:2021,30(1):10-18
本文二维码信息
码上扫一扫!
标签噪声学习算法综述
(长安大学 信息工程学院, 西安 710064)
Review on Label Noise Learning Algorithms
(School of Information Engineering, Chang’an University, Xi’an 710064, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2421次   下载 8363
Received:June 05, 2020    Revised:June 30, 2020
中文摘要: 机器学习中, 训练样本的标签质量严重影响着分类算法的最终效果. 虽然干净的标签产生的效果相对来说比较好, 但是采集和使用时却费时费力. 因此为了节约成本, 同时也为了使模型能够适应于一般情况, 研究人员逐渐开始针对普通类数据进行学习, 即带有标签噪声的数据. 虽然近些年有些许著作专门针对标签噪声进行研究, 但是缺乏对其的全面分析. 基于此, 本文首先对标签噪声进行简要而全面的介绍, 然后对近几年标签噪声的学习算法分别进行显式、隐式两个方面的分析, 并做出总结, 最后对未来标签噪声的研究做出展望.
Abstract:In machine learning, the label quality of the training samples seriously affects the final effect of the classification algorithms. Although the effect of a clean label is relatively good, it takes time and effort to collect and use. Therefore, in order to save costs and make the model adapt to the general situation, researchers gradually began to learn from ordinary data, that is, data with label noise. In recent years, although some works have been devoted to label noise, they lack comprehensive analysis. Based on this, this paper first introduces the label noise briefly and comprehensively, then analyzes the learning algorithms of tag noise in recent years explicitly and implicitly, and summarizes them. Finally, we look forward to the future research on label noise.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金面上项目(61771075); 长安大学中央高校基本科研业务费专项资金(300102249203)
引用文本:
王晓莉,薛丽.标签噪声学习算法综述.计算机系统应用,2021,30(1):10-18
WANG Xiao-Li,XUE Li.Review on Label Noise Learning Algorithms.COMPUTER SYSTEMS APPLICATIONS,2021,30(1):10-18