###
计算机系统应用英文版:2021,30(2):176-181
本文二维码信息
码上扫一扫!
基于生成对抗网络的图像清晰度提升方法
(河海大学 计算机与信息学院, 南京 210024)
Improved Image Sharpness Method Based on Generative Adversarial Network
(College of Computer and Information, Hohai University, Nanjing 210024, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1019次   下载 2482
Received:June 10, 2020    Revised:July 10, 2020
中文摘要: 视频监控、军事目标识别以及消费型摄影等众多领域对图像清晰度有很高的要求. 近年来, 深度神经网络在视觉和定量评估的应用研究中取得较大进展, 但是其结果一般缺乏图像纹理的细节, 边缘过度平滑, 给人一种模糊的视觉体验. 本文提出了一种基于生成对抗网络的图像清晰度提升方法. 为了更好的传递图像的细节信息, 采用改进的残差块和跳跃连接作为生成网络的主体架构, 生成器损失函数除了对抗损失, 还包括内容损失、感知损失和纹理损失. 在DIV2K数据集上的实验表明, 该方法在提升图像清晰度方面有较好的视觉体验和定量评估.
Abstract:Video surveillance, military object recognition, consumer photography, and many other fields have high requirements for image sharpness. In recent years, deep neural networks have made great progress in the applied research on visual and quantitative evaluation, but the results generally lack the details of image textures, and the edges are too smooth, providing blurry visual experience. For this reason, we propose a method of improving image sharpness based on the generative adversarial network in this study. In order to better delivery the image details, this method adopts the improved residual block and skip connection as the main structure of the generative network, and the generator loss function consists of content loss, perception loss, and texture loss in addition to adversarial loss. Finally, the experiments on the DIV2K dataset prove that the proposed method exhibits good visual experience and quantitative evaluation in terms of improving image sharpness.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
范晓烨,王敏.基于生成对抗网络的图像清晰度提升方法.计算机系统应用,2021,30(2):176-181
FAN Xiao-Ye,WANG Min.Improved Image Sharpness Method Based on Generative Adversarial Network.COMPUTER SYSTEMS APPLICATIONS,2021,30(2):176-181