###
计算机系统应用英文版:2021,30(2):140-146
本文二维码信息
码上扫一扫!
基于融合元路径的图神经网络协同过滤算法
(北京工业大学 信息学部, 北京 100124)
Collaborative Filtering Algorithm of Graph Neural Network Based on Fusion Meta-Path
(Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 976次   下载 2217
Received:May 09, 2020    Revised:July 07, 2020
中文摘要: 传统的协同过滤算法没有充分考虑用户和商品的交互信息, 且面临数据稀疏、冷启动等问题, 造成了推荐系统的结果不准确. 在本文中提出了一种新的推荐算法, 即基于融合元路径的图神经网络协同过滤算法. 该算法首先由二部图嵌入用户和商品的历史互动, 并通过多层神经网络传播获取用户和商品的高阶特征; 然后基于元路径的随机游走来获取异质信息网络中的潜在语义信息; 最后将用户和商品的高阶特征和潜在特征融合并做评分预测. 实验结果表明, 基于融合元路径的图神经网络协同过滤算法比传统的推荐算法有明显提升.
Abstract:The traditional collaborative filtering algorithms do not fully consider the user-item interaction information and face problems such as data sparseness or cold start, which results in inaccurate results of the recommendation system. For this reason, we propose a new recommendation algorithm, which is a collaborative filtering algorithm of graph neural network based on fusion meta-path. To be specific, first, the user-item historical interactions are embedded by a bipartite graph and the high-level features of users and items are obtained through multi-layer neural network propagation. Then, latent semantic information in the heterogeneous information network is acquired according to the random walk of meta-paths. Finally, the high-level features and latent features of users and items are combined for scoring prediction. The experimental results show that compared with the traditional recommendation algorithms, the proposed algorithm has been significantly improved.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
蒋宗礼,田聪聪.基于融合元路径的图神经网络协同过滤算法.计算机系统应用,2021,30(2):140-146
JIANG Zong-Li,TIAN Cong-Cong.Collaborative Filtering Algorithm of Graph Neural Network Based on Fusion Meta-Path.COMPUTER SYSTEMS APPLICATIONS,2021,30(2):140-146