本文已被:浏览 1178次 下载 2321次
Received:June 06, 2020 Revised:July 07, 2020
Received:June 06, 2020 Revised:July 07, 2020
中文摘要: 跨域目标检测是最近兴起的研究方向, 旨在解决训练集到测试集的泛化问题. 在已有的方法中利用图像风格转换并在转换后的数据集上训练模型是一个有效的方法, 然而这一方法存在不能端到端训练的问题, 效率低, 流程繁琐. 为此, 我们提出一种新的基于图像风格迁移的跨域目标检测算法, 可以把图像风格迁移和目标检测结合在一起, 进行端到端训练, 大大简化训练流程, 在几个常见数据集上的结果证明了该模型的有效性.
Abstract:Cross-domain object detection is a new research direction, which aims to solve the problem of generalization from training set to test set. In the existing methods, using image style transfer and train the model on the converted data set is an effective method. However, this method has the problems of not end-to-end training, low efficiency, and tedious process. Therefore, we propose a new cross domain target detection algorithm based on image style migration, which can combine image style migration and target detection to carry out end-to-end training, and greatly simplify the training process. The results on several common datasets show the validity of the model.
keywords: cross-domain object detection style transfer end-to-end
文章编号: 中图分类号: 文献标志码:
基金项目:安徽省重点研发计划(201904a05020035)
引用文本:
吴泽远,朱明.基于图像风格迁移的端到端跨域目标检测.计算机系统应用,2021,30(1):194-199
WU Ze-Yuan,ZHU Ming.End-to-End Cross-Domain Object Detection Based on Image Style Transfer.COMPUTER SYSTEMS APPLICATIONS,2021,30(1):194-199
吴泽远,朱明.基于图像风格迁移的端到端跨域目标检测.计算机系统应用,2021,30(1):194-199
WU Ze-Yuan,ZHU Ming.End-to-End Cross-Domain Object Detection Based on Image Style Transfer.COMPUTER SYSTEMS APPLICATIONS,2021,30(1):194-199