###
计算机系统应用英文版:2020,29(11):204-209
本文二维码信息
码上扫一扫!
基于便携式传感器数据的GMM-HMM人体姿态识别算法
(1.浙江理工大学 机械与自动控制学院, 杭州 310018;2.浙江工业大学 信息工程学院, 杭州 310023)
GMM-HMM Human Body Posture Recognition Based on Portable Sensor Data
(1.Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China;2.College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 730次   下载 2067
Received:April 03, 2020    Revised:May 15, 2020
中文摘要: 人体姿态识别在人机交互, 游戏以及医疗健康等领域有着深远意义, 基于便携式传感器进行多种人体姿态高精度的稳定识别是该领域的研究难点. 本文采集了8种姿态的高频传感器数据, 提取原始数据的窗口时域特征组成数据集. 根据人体姿态的传感器数据特点将人体姿态划分为4个阶段, 使用高斯混合模型(Gaussian Mixture Model, GMM)拟合人体姿态的观测序列, 结合隐马尔可夫模型(Hidden Markov Model, HMM), 利用GMM-HMM算法进行姿态识别. 本文对比了不同窗口值下的一阶隐马尔可夫模型(1 Order Hidden Markov Model, 1OHMM)和二阶隐马尔可夫模型(2 Order Hidden Markov Model, 2OHMM)的效果, 当窗口值为8时, 2OHMM的性能最优, 整体召回率达到了95.30%, 平均准确率达到了95.23%. 与其它研究相比, 本文算法能识别的姿态种类较多, 算法识别性能较佳且算法耗时较短.
中文关键词: 便携式传感器数据  GMM  1OHMM  2OHMM  姿态识别
Abstract:Human body posture recognition has far-reaching significance in the fields of human-computer interaction, games, and medical health. It is a difficult research point in this field to perform high-precision and stable recognition of various human body posture based on portable sensors. This study collects high-frequency sensor data of eight postures, and the data set is sorted out by extracting the window time-domain features of the original data. According to the characteristics of the sensor data, the human posture is divided into four stages, and the Gaussian Mixture Model (GMM) is used to fit the observation sequence of the human posture, combined with the Hidden Markov Model (HMM), then, use GMM-HMM algorithm for gesture recognition. This study compares the effects of the First Order Hidden Markov Model (1OHMM) and the Second Order Hidden Markov Model (2OHMM) under different window values. When the window value is 8, the performance of 2OHMM is optimal, and the overall recall rate reaches 95.30%, the average accuracy rate reaches 95.23%. Compared with other studies, the algorithm in this work can recognize more types of gestures, has better recognition performance, and takes less time.
文章编号:     中图分类号:    文献标志码:
基金项目:浙江省公益性技术应用研究计划(2017C33153)
引用文本:
马永,洪榛.基于便携式传感器数据的GMM-HMM人体姿态识别算法.计算机系统应用,2020,29(11):204-209
MA Yong,HONG Zhen.GMM-HMM Human Body Posture Recognition Based on Portable Sensor Data.COMPUTER SYSTEMS APPLICATIONS,2020,29(11):204-209