###
计算机系统应用英文版:2020,29(11):190-195
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于深度可分离卷积的苹果叶病理识别
(1.广州大学 华软软件学院 网络技术系, 广州 510900;2.广州大学 华软软件学院 计算机系, 广州 510900)
Pathological Recognition of Apple Leaves Based on Deeply Separable Convolution
(1.Department of Network Technology, South China Institute of Software Engineering, Guangzhou University, Guangzhou 510990, China;2.Department of Computer, South China Institute of Software Engineering, Guangzhou University, Guangzhou 510990, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 907次   下载 2505
Received:March 12, 2020    Revised:April 14, 2020
中文摘要: 本文以斑点落叶病等5种苹果叶病害为研究对象, 设计了一种基于深度可分离卷积的苹果叶病理识别方法. 该方法采用概率数据增强对原始数据集进行扩增, 使用迁移学习探索了深度可分离卷积神经网络在农作物病理识别中的应用: 设计了一种适用于受限设备的深度学习模型以实现对苹果叶病害的识别分类, 并将该模型进行压缩和转换, 移植到某嵌入式系统上进行了验证. 实验结果表明该方法在受限设备上的识别率最高仍可达85.96%, 具有较好的识别效果.
Abstract:In this study, we take a few kinds of leaf diseases of apple tree, such as Alternaria mali Roberts, as research objects, and a pathological identification method for apple tree leaf diseases based on depth-separable convolution is designed. The probability data enhancement is used to amplify the original dataset, a deep separable convolutional neural network is explored by using transductive transfer learning, and is applied to crop pathological recognition. An in-depth learning model for restricted equipment is designed to recognize and classify the apple tree leaf diseases, and the model is compressed, transformed, and transplanted to an embedded system for verification. The experimental results show that the proposed method has a good recognition effect, the recognition rate is up to 85.96% in the restricted equipment.
文章编号:     中图分类号:    文献标志码:
基金项目:2018年广东省普通高校特色创新项目(2018KTSCX341); 2018年广东省创强青年人才项目(2018KQNCX389); 2018广州大学华软软件学院创新强校工程(JXTD201804)
引用文本:
王健,刘雪花.基于深度可分离卷积的苹果叶病理识别.计算机系统应用,2020,29(11):190-195
WANG Jian,LIU Xue-Hua.Pathological Recognition of Apple Leaves Based on Deeply Separable Convolution.COMPUTER SYSTEMS APPLICATIONS,2020,29(11):190-195