###
计算机系统应用英文版:2020,29(12):163-169
本文二维码信息
码上扫一扫!
基于EEMD-MIPCA-LSTM的燃气短期负荷预测
(上海师范大学 信息与机电工程学院, 上海 201400)
Short Term Gas Load Forecasting Based on EEMD-MIPCA-LSTM
(College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201400, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 885次   下载 1958
Received:April 14, 2020    Revised:May 15, 2020
中文摘要: 燃气负荷受到天气状况和经济发展等多种因素的影响, 造成燃气变化趋势具有较大的复杂性和特征因子较大的冗余性, 造成预测精度的下降. 为了解决这个问题, 在处理燃气负荷的复杂性中使用EEMD自适应的时频局部化分析方法, 将非线性非平稳的燃气负荷数据分解为平稳的本征模式分量及剩余项. 在解决特征因子之间的冗余性中, 在PCA中加入互信息分析, 使用互信息代替协方差矩阵的特征值选择特征向量, 可以有效避免PCA仅仅考虑特征之间的相关性, 忽略了与燃气负荷值关系的缺点. 最后针对不同的子序列建立对应的LSTM模型, 重构各个分量的预测值产生最后的结果. 使用上海的燃气数据进行验证, 实验结果证明本文提出的方法测试集MAPE达到6.36%, 低于其他模型的误差.
Abstract:The gas load is affected by a variety of factors, which cause the trend of gas load changes to have greater complexity and more redundancy of eigenfactors. In order to solve this problem, the EEMD adaptive time-frequency localization analysis method is used to deal with the complexity of the gas load. The non-stationary gas load data is decomposed into stationary eigenmode components and residual terms. Mutual information analysis is added to the PCA to select the eigenvectors. The relationship between the features and the gas load value can be considered in the dimension reduction. The corresponding LSTM model outputs the final result. Using Shanghai gas data for verification, the experimental results prove that the method proposed in this study has a MAPE of 6.36%, which is lower than the error of other models.
文章编号:     中图分类号:    文献标志码:
基金项目:上海市科委项目(115105024)
引用文本:
冷跻峰,徐晓钟.基于EEMD-MIPCA-LSTM的燃气短期负荷预测.计算机系统应用,2020,29(12):163-169
LENG Ji-Feng,XU Xiao-Zhong.Short Term Gas Load Forecasting Based on EEMD-MIPCA-LSTM.COMPUTER SYSTEMS APPLICATIONS,2020,29(12):163-169