本文已被:浏览 1072次 下载 3251次
Received:March 19, 2020 Revised:April 21, 2020
Received:March 19, 2020 Revised:April 21, 2020
中文摘要: 构建了基于粒子群优化卷积神经网络(PSO-CNN)的分布式拒绝服务攻击(DDoS)攻击检测模型. 利用卷积神经网络的权值共享和最大池化自动挖掘网络数据流特征, 引入粒子群对卷积核进行优化, 在提升模型训练效率的同时, 增强了模型的全局寻优能力. 实验结果表明, 该模型能够有效检测DDoS攻击, 具有较高的检测准确率.
Abstract:This study constructs a Distributed Denial-of-Service (DDoS) attack detection model based on Particle Swarm Optimization-Convolutional Neural Network (PSO-CNN). First, it uses the weight sharing and maximum pooling of CNN to automatically mine the features of data streams. Then, it applies PSO to the convolution kernel, thus increasing the training efficiency and enhancing the global optimization. In conclusion, the model proposed in this study has high detection accuracy for DDoS attacks.
文章编号: 中图分类号: 文献标志码:
基金项目:
Author Name | Affiliation | |
XI Yu-Long | Anhui No.2 Provincial People’s Hospital, Hefei 230041, China | laraech@aliyun.com |
Author Name | Affiliation | |
XI Yu-Long | Anhui No.2 Provincial People’s Hospital, Hefei 230041, China | laraech@aliyun.com |
引用文本:
奚玉龙.基于深度学习的DDoS攻击检测模型.计算机系统应用,2021,30(4):216-221
XI Yu-Long.DDoS Attack Detection Model Based on Deep Learning.COMPUTER SYSTEMS APPLICATIONS,2021,30(4):216-221
奚玉龙.基于深度学习的DDoS攻击检测模型.计算机系统应用,2021,30(4):216-221
XI Yu-Long.DDoS Attack Detection Model Based on Deep Learning.COMPUTER SYSTEMS APPLICATIONS,2021,30(4):216-221