###
计算机系统应用英文版:2020,29(11):227-231
本文二维码信息
码上扫一扫!
基于深度学习的人手视觉追踪机器人
(1.青岛科技大学 信息科学技术学院, 青岛 266061;2.海尔集团博士后工作站, 青岛 266000)
Human Hands Visual Tracking Robot Based on Deep Learning
(1.College of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China;2.Postdoctoral Workstation of Haier Group, Qingdao 266000, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 950次   下载 2340
Received:January 08, 2020    Revised:February 08, 2020
中文摘要: 视觉追踪是智能机器人的核心功能之一, 广泛应用于自动驾驶、智慧养老等领域. 以低成本树莓派作为下位机机器人平台, 通过在上位机运行事先训练好的深度学习SSD模型实现对人手的目标检测与视觉追踪. 基于谷歌TensorFlow深度学习框架和美国印第安纳大学EgoHands数据集对SSD模型进行训练. 机器人和上位机的软件使用Python在Linux系统下编程实现, 两者之间通过WiFi进行视频流与追踪控制命令的交互. 实测表明, 所研制智能机器人的视觉追踪功能具有良好的稳定性和性能.
Abstract:Vision tracking is one of the core functions of smart robots, and widely used in automatic driving, intelligent pension and other fields. The low-cost Raspberry Pi is employed as the slave computer robot platform. The object detection and visual tracking of human hands is implemented through running the pre-trained deep learning SSD model on host computer. The SSD model is trained based on Google’s TensorFlow deep learning framework and US Indiana University’s EgoHands dataset. Both of the robot and host computer’s software is written by Python in Linux systems. Video stream and tracking control commands are exchanged between robot and host via WiFi. The practical tests show that the vision tracking function of the developed smart robot has good stability and performance.
文章编号:     中图分类号:    文献标志码:
基金项目:青岛科技大学教学改革研究面上项目(2018MS44); 青岛市博士后应用研究项目
引用文本:
林粤伟,牟森.基于深度学习的人手视觉追踪机器人.计算机系统应用,2020,29(11):227-231
LIN Yue-Wei,MU Sen.Human Hands Visual Tracking Robot Based on Deep Learning.COMPUTER SYSTEMS APPLICATIONS,2020,29(11):227-231