###
计算机系统应用英文版:2020,29(11):237-242
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
面向生产管控的多源数据处理技术
(西南交通大学 信息科学与技术学院, 成都 611756)
Multi-Source Data Processing Technology for Production Control
(School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 798次   下载 1456
Received:February 02, 2020    Revised:March 03, 2020
中文摘要: 为了解决流程型生产车间数据种类多、数据质量参差不齐影响生产管控的问题, 提出了面向多源数据的数据分类处理技术, 采用数据分类与滑动窗口相结合的方式进行数据处理. 首先, 根据生产数据特点建立数据模型, 然后进行数据分类. 主要分为状态数据、开关数据、逻辑数据 3类, 不同类型的数据使用不同处理算法; 同时采用滑动窗口解决不同任务对数据实时性和完整性要求不同的难点. 最后, 该数据分类处理模型在实际生产环境投入使用, 验证了对生产数据处理的准确性和实时性. 结果表明, 将处理后的数据应用于生产管控, 管控误差率降低至不足1%.
Abstract:In order to solve the problem that there are multi-source and uneven quality data in process-oriented workshop, which affect production control, the data classification and processing technology for multi-source data is proposed. Data processing is performed using a combination of data classification and sliding windows. First, a data model is established based on the characteristics of the production data, and the data is classified. It is mainly divided into three types: state data, switch data and logical data. Different types of data use different processing algorithms. As the same time, sliding windows are used to solve the difficult that different tasks have different requirements for data real-time and integrity. Finally, the data classification processing model is put into use in the actual production environment, which verifies the accuracy and real-time performance of the production data processing. The results show that by applying the processed data to production control, the control error rate is reduced to less than 1%.
文章编号:     中图分类号:    文献标志码:
基金项目:国家科技支撑计划(2017YFB1401401); 山东省重大科技创新工程(2017CXGC0608-02)
引用文本:
龚勋,王淑营,崔晓宇.面向生产管控的多源数据处理技术.计算机系统应用,2020,29(11):237-242
GONG Xun,WANG Shu-Ying,CUI Xiao-Yu.Multi-Source Data Processing Technology for Production Control.COMPUTER SYSTEMS APPLICATIONS,2020,29(11):237-242