本文已被:浏览 803次 下载 1940次
Received:January 09, 2020 Revised:February 08, 2020
Received:January 09, 2020 Revised:February 08, 2020
中文摘要: 深层神经网络拥有更强特征表达能力的同时, 也带来了优化难、训练成本高及梯度弥散等问题; 参数数量的激增则导致模型过于臃肿, 不利于其在移动端及工业控制设备等算力弱、存储小的平台上的部署. 针对这些问题, 构建了一种融合空洞卷积和多尺度稀疏结构的轻量神经网络对图像进行特征提取, 实现对带有彩色图形噪声且字符扭曲粘连严重的验证码图像的端到端识别. 将包含100万张验证码图像的数据集按98:1:1的比例划分为训练集、验证集和测试集, 逐批参与训练. 实验结果表明, 该网络在大大减少参数数量的同时, 具有测试集上98.9%的识别成功率.
Abstract:The deep neural network can better express features but results in difficult optimization, high training cost, and vanishing gradient. The surge in quantity of parameters leads to a too bloated model to be deployed on the platform with weak computing power and small storage, such as mobile terminal and industrial control equipment. Aiming at these problems, we construct a lightweight neural network combining atrous convolutions and multi-scale sparse structures to extract the features of images, and realize the end-to-end recognition for the captcha images with color pattern noise and seriously touched and distorted characters. The dataset containing one million images was divided into training sets, validation sets, and test sets in the ratio of 98:1:1 and trained in batches. Consequently, the lightweight neural network has a recognition rate of 98.9% on test sets with much fewer parameters.
keywords: lightweight Convolutional Neural Network (CNN) multi-scale sparse structure atrous convolutions
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(61472148, 61701194); 湖北省教育厅科研计划(B2018254)
引用文本:
李昊,程辉.面向复杂验证码识别任务的轻量神经网络设计.计算机系统应用,2021,30(4):247-252
LI Hao,CHENG Hui.Lightweight Neural Network Design for Complex Verification Code Recognition Task.COMPUTER SYSTEMS APPLICATIONS,2021,30(4):247-252
李昊,程辉.面向复杂验证码识别任务的轻量神经网络设计.计算机系统应用,2021,30(4):247-252
LI Hao,CHENG Hui.Lightweight Neural Network Design for Complex Verification Code Recognition Task.COMPUTER SYSTEMS APPLICATIONS,2021,30(4):247-252