本文已被:浏览 1649次 下载 2122次
Received:September 20, 2019 Revised:October 15, 2019
Received:September 20, 2019 Revised:October 15, 2019
中文摘要: 糖尿病的早期发现,对成功控制、预防并发症,降低患病率具有重要意义.现有基于机器学习建立的糖尿病诊断模型,由于泛化能力不足而导致精度较低.为此,本文提出结合批归一化的多层感知机模型,保证模型中数据分布的一致性.基于PIMA数据集进行训练评估,实验结果表明该模型用于糖尿病早期识别泛化能力好、收敛速度快且有较高的准确率.
Abstract:The early detection of diabetes is of great significance for successful control of diabetes, prevention of complications, and reduction of prevalence. Existing diabetes diagnosis models based on machine learning have weak precision due to insufficient generalization ability. Therefore, this study proposes a multi-layer perceptron model combined with batch normalization to ensure the consistency of data distribution in the model. The proposed model is based on the PIMA training set for training evaluation. The experimental results show that the model has sound generalization ability in early recognition of diabetes, fast convergence, and high accuracy.
文章编号: 中图分类号: 文献标志码:
基金项目:福建省自然科学基金(2019J01856);赛尔网络下一代互联网创新项目(NGII20160708)
引用文本:
胡清礼,胡建强,余小燕.结合批归一化的多层感知机糖尿病预测诊断模型.计算机系统应用,2020,29(5):182-188
HU Qing-Li,HU Jian-Qiang,YU Xiao-Yan.Multi-Layer Perceptron Diabetes Prediction Model Combined with Batch Normalization.COMPUTER SYSTEMS APPLICATIONS,2020,29(5):182-188
胡清礼,胡建强,余小燕.结合批归一化的多层感知机糖尿病预测诊断模型.计算机系统应用,2020,29(5):182-188
HU Qing-Li,HU Jian-Qiang,YU Xiao-Yan.Multi-Layer Perceptron Diabetes Prediction Model Combined with Batch Normalization.COMPUTER SYSTEMS APPLICATIONS,2020,29(5):182-188