本文已被:浏览 1243次 下载 1820次
Received:September 05, 2019 Revised:October 08, 2019
Received:September 05, 2019 Revised:October 08, 2019
中文摘要: 现实中采集的数据由于需要适应实际工程需求以及数据细粒度信息的分类形式多样,样本数据间很难保持完全的独立同分布.而非独立同分布数据会严重降低深度神经网络模型训练的鲁棒性以及特定任务上的泛化性能.为了降低非独立同分布数据在模型训练和推断过程中的不良影响,提出一种批规范化的改进算法.该算法在神经网络模型训练开始前从数据集中取出一小批量数据做批规范化,求解出的均值与方差作为参考值用来更新训练时的其他批量数据.实验结果表明,该改进算法一定程度上能够加快神经网络模型训练收敛,相对于BN算法,分类错误率降低了0.3%,提高了神经网络模型训练的鲁棒性.在目标检测和实例分割任务上,应用该改进算法的预训练模型能够有效提高某些检测算法的泛化性能.
Abstract:It is needed to be adapted to the actual engineering requirements and the classification of the fine-grained data when we collect and annotate data. However, It is difficult to maintain complete independent and identical distribution between the samples. The non-i.i.d data seriously reduce the training’s robustness of deep neural network model and the generalization performance of specific tasks. In order to overcome the shortcomings, this study proposes an improved algorithm of batch normalization, which normalizes a fix reference batch to calculate its mean and variance when the model training started, and then, the statistics of the reference batch is used to update other batches. Experimental results show that the proposed algorithm can accelerate the training convergence speed of the neural network model, meanwhile, the classification error is reduced by 0.3% compared with the BN algorithm. On the other hand, the robustness of neural network model and the generalization performance of some detection frameworks like object detection or instance segmentation are also improved effectively.
文章编号: 中图分类号: 文献标志码:
基金项目:广东省教育厅重点科研平台项目(2017GWTSCX064)
引用文本:
罗国强,李家华,左文涛.一种深度学习批规范化改进算法.计算机系统应用,2020,29(4):187-194
LUO Guo-Qiang,LI Jia-Hua,ZUO Wen-Tao.Improved Batch Normalization Algorithm for Deep Learning.COMPUTER SYSTEMS APPLICATIONS,2020,29(4):187-194
罗国强,李家华,左文涛.一种深度学习批规范化改进算法.计算机系统应用,2020,29(4):187-194
LUO Guo-Qiang,LI Jia-Hua,ZUO Wen-Tao.Improved Batch Normalization Algorithm for Deep Learning.COMPUTER SYSTEMS APPLICATIONS,2020,29(4):187-194