本文已被:浏览 1307次 下载 2293次
Received:August 22, 2019 Revised:September 09, 2019
Received:August 22, 2019 Revised:September 09, 2019
中文摘要: 在线客服系统的服务量受到多种因素影响,为提高系统的服务量预测精度,本文基于离散变异控制参数的自适应差分进化算法DMPSADE,提出了一种改进算法IDMPSADE,并将其与长短时记忆神经网络LSTM相结合建立了对服务量的预测模型IDMPSADE-LSTM.在IDMPSADE中,当子代种群测试函数寻优性能没有父代种群好时,对父代种群个体进行反向引导,跳出局部最优,提升搜索到全局最优能力.由于LSTM的神经元数量、迭代次数、学习率以及训练批次需要通过经验进行设置,具有较大的随机性,故利用IDMPSADE对这些参数进行寻优.IDMPSADE-LSTM将分析得到的气温、降水量作为影响因素结合服务量的时间特征对系统的服务量进行预测.文中实验结果表明,IDMPSADE-LSTM预测模型比一般的神经网络以及SARIMA-SVM混合预测模型的精确度要高.
Abstract:The service volume of online customer service system is affected by many factors. In order to improve the prediction accuracy of service volume, an improved algorithm IDMPSADE is proposed on the basis of self-adaptive differential evolution algorithm DMPSADE with discrete mutation control parameters. By combining IDMPSADE with Long-Short Term Memory network (LSTM), an IDMPSADE-LSTM prediction model of service volume is established. IDMPSADE chooses the reverse guidance of the parent population whose child population’s performance on test functions is not as good as it, which can escape from the local optimum and improve the capability of searching the optimal solution within defined space. LSTM’s parameters, such as number of neurons, epochs, learning rate, and batch-size, are set by experience and have larger randomness, and IDMPSADE could be helpful to optimize these parameters. IDMPSADE-LSTM prediction model uses temperature and precipitation as influencing factors and combines with the temporal characteristics of service volume to predict the service volume. The experimental results show that the proposed IDMPSADE-LSTM prediction model is more accurate compared with general neural networks and SARIMA-SVM hybrid prediction model.
keywords: service volume of online customer service system time series prediction differential evolution algorithm Long-Short Term Memory (LSTM)
文章编号: 中图分类号: 文献标志码:
基金项目:国网江苏省电力有限公司科技项目(J2018020)
Author Name | Affiliation | |
ZHOU Zi-Xin | College of Computer and Information, Hohai University, Nanjing 211100, China | Ada_Chow@189.cn |
Author Name | Affiliation | |
ZHOU Zi-Xin | College of Computer and Information, Hohai University, Nanjing 211100, China | Ada_Chow@189.cn |
引用文本:
周子馨.面向在线客服系统的服务量预测算法.计算机系统应用,2020,29(4):137-143
ZHOU Zi-Xin.Service Volume Prediction Algorithm for Online Customer Service System.COMPUTER SYSTEMS APPLICATIONS,2020,29(4):137-143
周子馨.面向在线客服系统的服务量预测算法.计算机系统应用,2020,29(4):137-143
ZHOU Zi-Xin.Service Volume Prediction Algorithm for Online Customer Service System.COMPUTER SYSTEMS APPLICATIONS,2020,29(4):137-143