本文已被:浏览 1510次 下载 2353次
Received:August 09, 2019 Revised:September 05, 2019
Received:August 09, 2019 Revised:September 05, 2019
中文摘要: 本文提出了一种新的混合进化算法求解具有线性恶化的并行机调度问题,目标是使总完工时间最小.该算法采用对立策略以及最小比率优先规则生成初始种群,并且引入种群多样度指标加快算法的收敛;同时加入含有3-opt扰动算子的变邻域搜索算法对遗传算法得到的结果进行局部搜索.通过对不同规模算例的实验进行仿真,其结果与传统GA和VNS算法相比,效果均有所提升.
Abstract:A new hybrid evolutionary algorithm is proposed to solve the parallel machine scheduling problems with step-piece deteriorating processing time. The goal is minimizing the total completion time. The algorithm uses opposing strategy and Smallest Rate First (SRF) rule to generate the initial population to improve its quality, and the algorithm considers the population diversity to accelerate the convergence of the algorithm, which improves the calculation efficiency of the algorithm. At the same time, a variable neighborhood search algorithm with 3-opt perturbation operator is added to improve the quality of the results obtained by the genetic algorithm. By simulating the experiments of different scale examples, the results are improved compared with the traditional GA and VNS algorithms.
keywords: parallel machine scheduling problem step-piece deteriorating processing time opposition-based learning genetic algorithm variable neighborhood search
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
陈海潮,程文明,郭鹏,王丽敏.混和进化算法求解具有分段恶化效应的并行机调度问题.计算机系统应用,2020,29(4):10-17
CHEN Hai-Chao,CHENG Wen-Ming,GUO Peng,WANG Li-Min.Hybrid Evolutionary Algorithm for Solving Parallel Machine Scheduling Problems with Step-Piece Deteriorating Processing Time.COMPUTER SYSTEMS APPLICATIONS,2020,29(4):10-17
陈海潮,程文明,郭鹏,王丽敏.混和进化算法求解具有分段恶化效应的并行机调度问题.计算机系统应用,2020,29(4):10-17
CHEN Hai-Chao,CHENG Wen-Ming,GUO Peng,WANG Li-Min.Hybrid Evolutionary Algorithm for Solving Parallel Machine Scheduling Problems with Step-Piece Deteriorating Processing Time.COMPUTER SYSTEMS APPLICATIONS,2020,29(4):10-17