###
计算机系统应用英文版:2021,30(6):238-245
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于Google Earth Engine的湖泊水位与水体面积关系研究
(1.武汉大学 遥感信息工程学院, 武汉 430079;2.武汉大学 测绘遥感信息工程国家重点实验室, 武汉 430079)
Study on Relationship Between Water Level and Water Area Based on Google Earth Engine
(1.School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;2.State Key Laboratory of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 927次   下载 2765
Received:May 14, 2019    Revised:May 31, 2019
中文摘要: 对于传统的湖泊水位-面积关系模型研究, 长时间序列遥感影像水体提取存在数据下载和处理繁琐、大量使用专业软件和人工干预多等问题, 研究过程耗时长、效率低. 基于Google Earth Engine, 对2002年至2016年长时间序列Landsat影像数据进行预处理, 利用NDWI提取东洞庭湖水体范围并计算水域面积, 结合城陵矶水文站日水位数据, 设计水位加权平均法、阈值法和单点水位法比较并确定影像对应的最优水位, 建立水位-水体面积关系曲线. 研究结果表明: (1)东洞庭湖水域范围随季节变化大, 面积在7~9月最大, 在1~3月最小; (2)利用阈值法计算最优水位的精度(R2=0.9628)优于加权平均水位法(R2=0.8322)和单点水位法(R2=0.9457); (3)五次多项式模型建立水位-面积关系曲线拟合精度最高(R2=0.9628).
Abstract:The research on the water level–water area relationship model is time-consuming and inefficient resulting from the cumbersome data downloading and processing, massive use of professional software, and frequent manual intervention in the water extraction from long-term sequence remote sensing images. We preprocess the Landsat images from 2002 to 2016 on Google Earth Engine. Then, we identify the water of East Dongting Lake by NDWI and calculate its area. On this basis, with the daily water level data from Chenglingji Hydrological Station, we identify the optimal water level corresponding to the image, and draw the water level–water area curve by the weighted average water-level method, the threshold method, and the single-point water-level method. The results are as follows: (1) The water scope of East Dongting Lake varies greatly with season, with the largest area in between July and September and the smallest area in between January and March. (2) The accuracy of calculating the optimal water level by the threshold method (R2 = 0.9628) is higher than that by the weighted average water-level method (R2 = 0.8322) and that by the single-point water-level method (R2 = 0.9457). (3) The fifth-order polynomial model has the highest accuracy (R2 = 0.9628) in fitting the water level–water area curve.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(41771422)
引用文本:
王诗蕾,罗晋,陈泽强.基于Google Earth Engine的湖泊水位与水体面积关系研究.计算机系统应用,2021,30(6):238-245
WANG Shi-Lei,LUO Jin,CHEN Ze-Qiang.Study on Relationship Between Water Level and Water Area Based on Google Earth Engine.COMPUTER SYSTEMS APPLICATIONS,2021,30(6):238-245