###
计算机系统应用英文版:2019,28(12):200-204
本文二维码信息
码上扫一扫!
基于改进遗传算法优化BP神经网络的销售预测模型
(1.南京工业大学浦江学院, 南京 211200;2.河海大学 计算机与信息学院, 南京 210008)
Sales Forecasting Model Based on BP Neural Network Optimized by Improved Genetic Algorithms
(1.Nanjing Tech University Pujiang Institute, Nanjing 211200, China;2.College of Computer and Information, Hohai University, Nanjing 210098, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1680次   下载 2356
Received:April 21, 2019    Revised:May 20, 2019
中文摘要: 随着经济的快速发展,众多企业步入科学化管理的时代.销售预测是企业经营活动中必不可少的一个环节,预测的准确性直接关系到销售经营的成败.因此提出基于传统BP神经网络与时间序列预测模型为一体的改良BP神经网络预测模型,通过该模型的预测,可以更可靠地预测企业在未来单位时间内的销售额.改良神经网络参考了同步时间序列的预测做出了自我校准,并利用遗传算法达到通过校准得到自我优化的目的,简化网络结构,提高预测的准确度.
Abstract:With the rapid development of economy, many enterprises are stepping into the era of scientific management. Sales forecasting is an indispensable link in the business activities of enterprises. The accuracy of forecasting is directly related to the success or failure of sales operations. Therefore, an improved BP neural network forecasting model based on the combination of traditional BP neural network and time series forecasting model is proposed. Through the forecasting of this model, the sales volume of enterprises in the future per unit time can be more reliably predicted. The improved neural network makes self-calibration referring to the prediction of synchronous time series, and uses genetic algorithm to achieve self-optimization through calibration, simplifies the network structure and improves the accuracy of prediction.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划重点专项(2017YFC0803700);江苏省高校自然科学研究项目(19KJD520005)
引用文本:
圣文顺,赵翰驰,孙艳文.基于改进遗传算法优化BP神经网络的销售预测模型.计算机系统应用,2019,28(12):200-204
SHENG Wen-Shun,ZHAO Han-Chi,SUN Yan-Wen.Sales Forecasting Model Based on BP Neural Network Optimized by Improved Genetic Algorithms.COMPUTER SYSTEMS APPLICATIONS,2019,28(12):200-204