本文已被:浏览 1490次 下载 2779次
Received:January 24, 2019 Revised:February 26, 2019
Received:January 24, 2019 Revised:February 26, 2019
中文摘要: 由于支持向量机的主要参数的选择能够在很大程度上影响分类性能和效果,并且目前参数优化缺乏理论指导,提出一种粒子群优化算法以优化支持向量机参数的方法.该方法通过引入非线性递减惯性权值和异步线性变化的学习因子策略来改善标准粒子群算法的后期收敛速度慢、易陷入局部最优的缺陷.实验结果表明,相对于标准粒子群算法,本方法在参数优化方面具有良好的鲁棒性、快速收敛和全局搜索能力,具有更高的分类精确度和效率.
Abstract:Since the selection of the main parameters of the support vector machine can affect the classification performance and effect to a large extent, and the current parameter optimization lacks theoretical guidance, a particle swarm optimization algorithm is proposed to optimize the parameters of the support vector machine. This method improves the shortcomings of the standard particle swarm optimization algorithm with slow convergence rate and easy to fall into local optimum by introducing nonlinear decreasing inertia weight and asynchronous linear variation learning factor strategy. The experimental results show that compared with the standard particle swarm optimization algorithm, the proposed method has good robustness, fast convergence and global search ability in parameter optimization, and has higher classification accuracy and efficiency.
keywords: support vector machine particle swarm optimization algorithm SVM parameter optimization inertia weight nonlinear decrement asynchronous change learning factor
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
贺心皓,罗旭.基于粒子群优化算法的支持向量机参数选择.计算机系统应用,2019,28(8):241-245
HE Xin-Hao,LUO Xu.Support Vector Machine Parameter Selection Based on Particle Swarm Optimization Algorithm.COMPUTER SYSTEMS APPLICATIONS,2019,28(8):241-245
贺心皓,罗旭.基于粒子群优化算法的支持向量机参数选择.计算机系统应用,2019,28(8):241-245
HE Xin-Hao,LUO Xu.Support Vector Machine Parameter Selection Based on Particle Swarm Optimization Algorithm.COMPUTER SYSTEMS APPLICATIONS,2019,28(8):241-245