###
计算机系统应用英文版:2018,27(3):149-155
本文二维码信息
码上扫一扫!
基于改进ReliefF的无监督特征选择方法
(1.中国科学院 沈阳计算技术研究所, 沈阳 110168;2.中国科学院大学, 北京 100049;3.国家电网公司东北分部, 沈阳 110180;4.吉林大学 计算机科学与技术学院, 长春 130000)
Unsupervised Feature Selection Method Based on Improved ReliefF
(1.Shenyang Institute of Computing Technology, Chinese Academy of Science, Shenyang 110168, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.State Grid Corporation Northeast Branch Corporation, Shenyang 110180, China;4.College of Computer Science and Technology, Jilin University, Changchun 130000, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2874次   下载 4688
Received:June 14, 2017    Revised:June 30, 2017
中文摘要: 针对特征选择中存在数据缺乏类别信息的问题,提出一种新型的基于改进ReliefF的无监督特征选择方法UFS-IR.由于ReliefF类算法存在小类样本抽样概率低、无法删除冗余特征的缺陷,该方法以DBSCAN聚类算法指导分类,通过改进抽样策略,使用调整的余弦相似度度量特征间的相关性作为去冗余的凭据.实验表明UFS-IR可以有效缩减数据维度的同时保证特征子集的最大相关最小冗余性,具有很好的性能.
Abstract:A novel method of unsupervised feature selection UFS-IR based on improved ReliefF is proposed to solve the problem of lack of category information in feature selection. As the ReliefF algorithm has a small sampling probability of small class samples, it cannot delete the defects of redundant features. This method uses DBSCAN clustering algorithm to guide the classification. By improving the sampling strategy, it uses the adjusted cosine similarity to measure the correlation between features as a de-redundancy credential. Experiments show that UFS-IR can effectively reduce the data dimension while ensuring the maximum correlation redundancy of the feature subset, and with good performance.
文章编号:     中图分类号:    文献标志码:
基金项目:国科控股企业技术创新引导基金(2015XS0356)
引用文本:
丁雪梅,王汉军,王炤光,周心圆.基于改进ReliefF的无监督特征选择方法.计算机系统应用,2018,27(3):149-155
DING Xue-Mei,WANG Han-Jun,WANG Zhao-Guang,ZHOU Xin-Yuan.Unsupervised Feature Selection Method Based on Improved ReliefF.COMPUTER SYSTEMS APPLICATIONS,2018,27(3):149-155