本文已被:浏览 2874次 下载 4688次
Received:June 14, 2017 Revised:June 30, 2017
Received:June 14, 2017 Revised:June 30, 2017
中文摘要: 针对特征选择中存在数据缺乏类别信息的问题,提出一种新型的基于改进ReliefF的无监督特征选择方法UFS-IR.由于ReliefF类算法存在小类样本抽样概率低、无法删除冗余特征的缺陷,该方法以DBSCAN聚类算法指导分类,通过改进抽样策略,使用调整的余弦相似度度量特征间的相关性作为去冗余的凭据.实验表明UFS-IR可以有效缩减数据维度的同时保证特征子集的最大相关最小冗余性,具有很好的性能.
Abstract:A novel method of unsupervised feature selection UFS-IR based on improved ReliefF is proposed to solve the problem of lack of category information in feature selection. As the ReliefF algorithm has a small sampling probability of small class samples, it cannot delete the defects of redundant features. This method uses DBSCAN clustering algorithm to guide the classification. By improving the sampling strategy, it uses the adjusted cosine similarity to measure the correlation between features as a de-redundancy credential. Experiments show that UFS-IR can effectively reduce the data dimension while ensuring the maximum correlation redundancy of the feature subset, and with good performance.
文章编号: 中图分类号: 文献标志码:
基金项目:国科控股企业技术创新引导基金(2015XS0356)
引用文本:
丁雪梅,王汉军,王炤光,周心圆.基于改进ReliefF的无监督特征选择方法.计算机系统应用,2018,27(3):149-155
DING Xue-Mei,WANG Han-Jun,WANG Zhao-Guang,ZHOU Xin-Yuan.Unsupervised Feature Selection Method Based on Improved ReliefF.COMPUTER SYSTEMS APPLICATIONS,2018,27(3):149-155
丁雪梅,王汉军,王炤光,周心圆.基于改进ReliefF的无监督特征选择方法.计算机系统应用,2018,27(3):149-155
DING Xue-Mei,WANG Han-Jun,WANG Zhao-Guang,ZHOU Xin-Yuan.Unsupervised Feature Selection Method Based on Improved ReliefF.COMPUTER SYSTEMS APPLICATIONS,2018,27(3):149-155