###
计算机系统应用英文版:2017,26(8):190-194
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
应用自然邻居分类算法的大学生就业预测模型
(重庆大学 计算机学院, 重庆 400044)
Model of College Students’ Emolument Prediction Based on the Classification Algorithm with Natural Neighbor
(School of Computer Science and Technology, ChongQing University, Chongqing 400044, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1108次   下载 2347
Received:December 07, 2016    
中文摘要: 针对因大学生对薪酬预期过高而导致就业难的问题,利用基于自然邻居的分类算法对近三年信息类专业毕业生的就业数据进行分析,建立了大学生就业薪酬预测模型.首先采用因子分析方法提取出决定大学生就业薪酬级别的潜在因子并作为模型输入变量,进而应用基于自然邻居的分类算法对就业薪酬进行分类预测.其中,自然邻分类算法成功避免了KNN算法中存在的K值选取难题,且每个节点的邻居数目会根据数据集的分布状况自适应获取.实验结果表明,该模型的预测精度高达80.16%,对于帮助大学生建立合理就业预期、提高就业能力等方面具有一定指导意义.
Abstract:To solve the problem of hard employment of graduates who expect for the impractical emolument, the paper builds a model for emolument prediction. On the basis of an classification algorithm with natural neighbor(NaN),it analyzes the employment data of graduates majoring in Information Engineering in past three years. The paper uses factor analysis method to fetch the latency of employment emolument level determinants. Classification predicts the emolument by applying the latency as a variable based on the classification algorithm. This algorithm avoids the difficulty of parameter selection in K-nearest neighbor(KNN). The neighbors of each node can also be acquired as the topography of data set. According to the experiments, the prediction accuracy is 80.16%. The paper can guide graduates to build a reasonable emolument prediction or improve employment.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
朱庆生,高璇.应用自然邻居分类算法的大学生就业预测模型.计算机系统应用,2017,26(8):190-194
ZHU Qing-Sheng,GAO Xuan.Model of College Students’ Emolument Prediction Based on the Classification Algorithm with Natural Neighbor.COMPUTER SYSTEMS APPLICATIONS,2017,26(8):190-194