###
计算机系统应用英文版:2016,25(7):161-164
本文二维码信息
码上扫一扫!
基于小波模糊神经网络的实时交通流预测
(绥化学院 信息工程学院, 绥化 152061)
Study of Real-Time Traffic Flow Prediction Based on Wavelet Fuzzy Neural Networks
(College of Information Engineering, Suihua University, Suihua 152061, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1279次   下载 1899
Received:November 19, 2015    Revised:December 28, 2015
中文摘要: 实时交通流预测是智能运输系统研究的重要内容之一.本文将小波分析的相关知识与模糊神经网络相结合,给出了基于小波模糊神经网络的交通流预测模型,采用小波函数作为模糊隶属度函数,用神经网络来实现模糊推理,完成对下一个周期性交通流的估计.同时,用遗传算法来优化整个网络,实测数据验证这种方法预测精度高,收敛过程平稳,适应性强.
Abstract:Real-time traffic flow prediction is one of important contents of intelligent transportation system research. Combined with the related knowledge of wavelet analysis and fuzzy neural networks, this paper gives the traffic flow forecasting model based on wavelet fuzzy neural networks. It takes wavelet function as fuzzy membership function, uses neural networks to realize fuzzy reasoning, and finishes the estimation of next cyclical traffic flow. Simultaneously the genetic algorithm is used to optimize the overall network. After the field data test, this method has high forecasting precision, stable convergence process, strong adaptability.
文章编号:     中图分类号:    文献标志码:
基金项目:绥化学院科学技术研究项目(K1401012);黑龙江省教育厅科学技术研究项目(12533077)
引用文本:
邵俊倩.基于小波模糊神经网络的实时交通流预测.计算机系统应用,2016,25(7):161-164
SHAO Jun-Qian.Study of Real-Time Traffic Flow Prediction Based on Wavelet Fuzzy Neural Networks.COMPUTER SYSTEMS APPLICATIONS,2016,25(7):161-164