###
计算机系统应用英文版:2016,25(7):156-160
本文二维码信息
码上扫一扫!
基于云变换的混合计算模型在水淹层识别中的应用
(1.东北石油大学 计算机与信息技术学院, 大庆 163318;2.山东科技大学 信息科学与工程学院, 青岛 266000)
Application of Hybrid Computing Neural Network Model in Water Flooded Layer Recognition Based on Reverse Cloud Transformation
(1.The College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266000, China;2.School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1469次   下载 2012
Received:April 13, 2016    Revised:May 12, 2016
中文摘要: 目前为止,现有的自动判别方法难以反映定量指标和定性指标相结合的混合信息对水淹层识别的影响.因此,为提高水淹层判别的准确度,本文提出基于云变换的定量与定性混合计算神经网络模型来实现水淹层判别.一方面,利用云模型将提取测井相数据中的定性信息,保证了原始数据的完整性与客观性;另一方面,将输入信息中的定性概念通过正向标准云变换转换为量化的数值信息,保证了数据的科学性;最终将混合信息输入混合计算神经网络模型中进行判别,从而得出结论.实验证明采用基于云变换的混合计算神经网络模型对水淹层进行识别,具有精度高、速度快的特点,是水淹层识别的一种比较实用的方法.
Abstract:So far, the existing method for automatically discriminating information is difficult to reflect the impact of mixing quantitative and qualitative indicators of the combination of the water layer recognition. Therefore, in order to improve the accuracy of determining flooded layer, this paper proposes neural network model to calculate quantitative and qualitative transformation hybrid cloud-based discrimination to achieve flooded layer. On the one hand, qualitative information is extracted logs by cloud model, to ensure the integrity and objectivity of the original data; on the other hand, the information in the qualitative concept forward through the normal cloud is converted to quantized transform numerical information, ensures the scientific data; the eventual establishment of correspondence between the characteristics of the system input and results. Experimental results show the high accuracy of the calculation method for water layer recognition neural network based on hybrid cloud transformation, it has the characteristics of fast, flooded layer identification is a more practical approach.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
刘凌云,许少华.基于云变换的混合计算模型在水淹层识别中的应用.计算机系统应用,2016,25(7):156-160
LIU Ling-Yun,XU Shao-Hua.Application of Hybrid Computing Neural Network Model in Water Flooded Layer Recognition Based on Reverse Cloud Transformation.COMPUTER SYSTEMS APPLICATIONS,2016,25(7):156-160