###
DOI:
计算机系统应用英文版:2015,24(6):168-172
本文二维码信息
码上扫一扫!
混合属性数据k-prototypes聚类算法
(1.衢州职业技术学院 信息工程学院, 衢州 324000;2.衢州学院 电气与信息工程学院, 衢州 324000)
K-Prototypes Algorithm for Clustering of Data Mixed with Numeric and Categorical Attributes
(1.College of Information Engineering, Quzhou College of Technology, Quzhou 32400, China;2.College of Electrical and Information Engineering, Quzhou University, Quzhou 32400, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1665次   下载 4595
Received:September 24, 2014    Revised:November 14, 2014
中文摘要: 在现实世界中经常遇到混合数值属性和分类属性的数据, k-prototypes是聚类该类型数据的主要算法之一. 针对现有混合属性聚类算法的不足, 提出一种基于分布式质心和新差异测度的改进的k-prototypes算法. 在新算法中, 首先引入分布式质心来表示簇中的分类属性的簇中心, 然后结合均值和分布式质心来表示混合属性的簇中心, 并提出一种新的差异测度来计算数据对象与簇中心的距离, 新差异测度考虑了不同属性在聚类过程中的重要性. 在三个真实数据集上的仿真实验表明, 与传统的聚类算法相比, 本文算法的聚类精度要优于传统的聚类算法, 从而验证了本文算法的有效性.
Abstract:Data objects with mixed numeric and categorical attributes are commonly encountered in real world. The k-prototypes algorithm is one of the principals for clustering this type of data objects. An improved k-prototypes algorithm is proposed to cluster mixed data in this paper. In our method, the concept of the distribution centroid is introduced for representing the prototype of categorical attributes in a cluster. Then we combine both mean with distribution centroid to represent the prototype of the cluster with mixed attributes, and thus propose a new measure to calculate the dissimilarity between data objects and prototypes of clusters. This measure takes into account the significance of different attributes towards the clustering process. Finally, we present out algorithm for clustering mixed data, and the performance of our method is demonstrated by a series of experiments on three real-world datasets in comparison with that of traditional clustering algorithm.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
余文利,余建军,方建文.混合属性数据k-prototypes聚类算法.计算机系统应用,2015,24(6):168-172
YU Wen-Li,YU Jian-Jun,FANG Jian-Wen.K-Prototypes Algorithm for Clustering of Data Mixed with Numeric and Categorical Attributes.COMPUTER SYSTEMS APPLICATIONS,2015,24(6):168-172