###
DOI:
计算机系统应用英文版:2015,24(6):127-131
本文二维码信息
码上扫一扫!
快速混合高斯模型的运动目标检测
(1.福建师范大学 光电与信息工程学院, 福州 350007;2.福建师范大学 医学光电科学与技术教育部重点实验室, 福州 350007;3.福建师范大学 福建省光子技术重点实验室, 福州 350007;4.福建师范大学 智能光电系统工程研究中心, 福州 350007)
Fast Gaussian Mixture Model of Moving Target Detection
(1.School of Electronic College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, China;2.Key Laboratory of Optoelectronic Science and Technology for Medicine Ministry of Education, Fujian Normal University, Fuzhou 350007, China;3.Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China;4.Intelligent Optoelectronic Systems Research Centre, Fujian Normal University, Fuzhou 350007, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1374次   下载 2190
Received:September 18, 2014    Revised:October 16, 2014
中文摘要: 针对经典混合高斯模型算法在实际应用中计算量大实时性差, 且对光线变化和运动物体速度敏感的缺点, 提出一种改进的快速检测算法. 通过选取合适的间距, 先用帧间差分法提取出完整的运动区域和背景区域, 只对前者进行混合高斯模型匹配, 来降低计算量. 对背景图像不同区域采用不同背景更新率, 及时响应背景变化. 最后引入一个光线突变参数, 来预防光线突变给检测带来的干扰. 通过实验, 证明本算法在实时性, 鲁棒性, 稳定性等上有了很大的改善, 能够很好的检测出运动目标.
Abstract:In this paper, we propose an improved fast detecting algorithm to solve the disadvantages which are the high computation, sensitive to light changes and the speed of moving object of the classical Gaussian mixture model. We extract the complete regions of the motion and the background by using frame different method of choosing the appropriate space. The algorithm reduces the amount of calculation because it just needs to calculate part of pixels. We use different background update rate in the different area of the background to respond the changes of the background timely. Finally, we introduce an environment mutation parameter to detect mutations. Through experiments, the algorithm has made a lot of improvement in the aspects of the instantaneity, the robustness and the stability. The moving target can be detected very well.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
黄海涛,蔡坚勇,洪亲,蔡娟,丁侨俊.快速混合高斯模型的运动目标检测.计算机系统应用,2015,24(6):127-131
HUANG Hai-Tao,CAI Jian-Yong,HONG Qin,CAI Juan,DING Qiao-Jun.Fast Gaussian Mixture Model of Moving Target Detection.COMPUTER SYSTEMS APPLICATIONS,2015,24(6):127-131