###
DOI:
计算机系统应用英文版:2015,24(6):114-120
本文二维码信息
码上扫一扫!
梯度渐进回归树算法在电子商务品牌推荐中的应用
(中国石油勘探开发研究院, 北京100083)
Gradient Boosting Regression Tree Algorithm and Application of E-commerce Brand Recommendation
(1.Research Institute, Petroleum Exploration &2.Development, Beijing 100083, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1715次   下载 3100
Received:October 09, 2014    Revised:November 14, 2014
中文摘要: 针对电子商务推荐系统中, 互联网"信息过载"所造成的难以准确定位用户兴趣并提供准确品牌推荐的问题, 通过深入挖掘电子商务网中的用户行为日志, 抽取出能辨别出用户对商品品牌购买行为的多个特征, 然后将这些特征融入到梯度渐进回归树算法中, 建立用户兴趣偏好模型来提高推荐精度. 实验结果表明, 在数据稀疏的情况下, 该算法仍能较好的识别出用户对品牌的偏好, 并在推荐准确度方面较其他传统推荐和分类算法有明显的提高.
Abstract:In E-commerce recommendation system, "Information overload" on Internet has brought a tough problem, which is how to precisely position users' interest and provide users with accurate brand recommendation. To solve this problem, in this paper, many features which could describe the purchasing behavior of users are extracted by deeply mining large-scale of user behavior logs. A brand preference model was constructed by applying these features into Gradient Boosting Regression Tree algorithm, to improve accuracy of the recommendation algorithm. Experiment results show that, in condition of sparse data, algorithm in this paper can still fit brand preference of users very well, and has significantly improvement in accuracy compared with traditional recommendation and classification algorithm.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
申端明,乔德新,许琨,林霞,江日念.梯度渐进回归树算法在电子商务品牌推荐中的应用.计算机系统应用,2015,24(6):114-120
SHEN Duan-Ming,QIAO De-Xin,XU Kun,LIN Xia,JIANG Ri-Nian.Gradient Boosting Regression Tree Algorithm and Application of E-commerce Brand Recommendation.COMPUTER SYSTEMS APPLICATIONS,2015,24(6):114-120