本文已被:浏览 1564次 下载 3986次
Received:October 10, 2012 Revised:November 11, 2012
Received:October 10, 2012 Revised:November 11, 2012
中文摘要: 为了提高SVM的学习效率和泛化能力, 首先利用一种信息粒化算法对原始数据进行预处理, 该算法能将样本空间划分为多个粒(子空间), 降低样本规模, 节省时间复杂度. 然后将模糊粒化后的信息利用SVM进行回归分析, 同时利用交叉验证选出最优的分类器调节参数, 可降低分类器的复杂性和提高分类器的泛化能力, 避免出现过学习和欠学习. 最后通过预测上证指数的实验验证了该算法具有优越的特性, 能够较为准确的进行时序回归预测.
Abstract:In order to improve learning efficiency and generalization ability of SVM, firstly, the raw data is preprocessed by using an information granulation algorithm. This algorithm can divide sample space into multiple particles (subspace), reduce the sample size and save the time complexity. And then, the granulated information take SVM to carry on the regression analysis, while take cross validation to select the optimal classifier adjustable parameters, which can reduce the complexity of the classifier and improve the generalization capability of the classifier and avoid Over learning and less learning. Finally, the test results on forecasting the Shanghai Composite Index have proved that the system has a good-performance and make time series regression prediction precisely.
文章编号: 中图分类号: 文献标志码:
基金项目:广东省自然科学基金(0002014014)
引用文本:
彭勇,陈俞强.基于信息粒化的SVM时序回归预测.计算机系统应用,2013,22(5):163-167,206
PENG Yong,CHEN Yu-Qiang.Time Series Regression and Prediction Based on Information Granulation and SVM.COMPUTER SYSTEMS APPLICATIONS,2013,22(5):163-167,206
彭勇,陈俞强.基于信息粒化的SVM时序回归预测.计算机系统应用,2013,22(5):163-167,206
PENG Yong,CHEN Yu-Qiang.Time Series Regression and Prediction Based on Information Granulation and SVM.COMPUTER SYSTEMS APPLICATIONS,2013,22(5):163-167,206