###
DOI:
计算机系统应用英文版:2012,21(12):85-89,71
本文二维码信息
码上扫一扫!
结合加权特征向量空间模型和RBPNN 的文本分类方法
(昆明理工大学 信息工程与自动化学院, 昆明 650051)
Combination of Weighted Feature Vector Space Model and the RBPNN Text Classification Method
(School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650051, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1573次   下载 3485
Received:April 21, 2012    Revised:May 14, 2012
中文摘要: 提出了一种结合加权特征向量空间模型和径向基概率神经网络(RBPNN)的文本分类方法. 该方法针对传统的文本特征提取方法的不足, 根据文本中特征项的位置信息和所属类别信息定义特征权重, 然后, 依据特征项的权值计算文档特征项的频数, 通过 TFIDF 函数计算特征值并得到文本的特征向量, 最后, 采用RBPNN 网络分类, 通过最小二乘算法求解神经网络的第二隐层和输出层之间的权值, 最终训练获得文本分类模型. 文本分类实验结果表明, 该方法在文本分类中表现出较好的效果, 具有较好查全率和查准率.
Abstract:In this paper, a text classification method combined weighted feature vector space model and the RBPNN are presented. According to the insufficient of traditional text feature extraction method. In the method, the weigthing about text feature is given by the text feature location information and category information, and then the feature frequency is obtained. The characteristic value is calculated using the TFIDF function after that, and the characteristic vector of text is formed. Then the weights between the second network hidden layer and output layer are decided by the least squcre algorithm, so the classification model is built. The experimental results showed that, the good recall and precision are obtained. The performance of text classification method proposed is well.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(60863011;61175068)
引用文本:
李敏,余正涛.结合加权特征向量空间模型和RBPNN 的文本分类方法.计算机系统应用,2012,21(12):85-89,71
LI Min,YU Zheng-Tao.Combination of Weighted Feature Vector Space Model and the RBPNN Text Classification Method.COMPUTER SYSTEMS APPLICATIONS,2012,21(12):85-89,71