###
DOI:
计算机系统应用英文版:2012,21(12):80-84
本文二维码信息
码上扫一扫!
嵌入Mean Shift 的粒子滤波目标跟踪算法
(东北电力大学 自动化工程学院, 吉林 132012)
Particle Filter Algorithm Inserting Mean Shift for Object Tracking
(School of Automation Engineering, Northeast Dianli University, Jilin 132012, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1815次   下载 3562
Received:May 22, 2012    Revised:June 19, 2012
中文摘要: 传统的粒子滤波算法通常使用大量粒子表示目标状态的后验概率密度函数, 算法的计算量较大, 跟踪的实时性较差, 且无法对快速、遮挡目标进行准确跟踪. 针对以上问题, 提出了一种嵌入Mean Shift(均值偏移)的粒子滤波算法, 该方法充分利用了Mean Shift 聚类作用, 使得粒子分布更加合理, 不但提高了粒子的多样性, 而且有效减少了描述目标状态的粒子数目. 实验结果表明, 改进的目标跟踪算法具有较强的鲁棒性和较好的实时性.
中文关键词: 粒子滤波  Mean Shift  目标跟踪  实时性
Abstract:Traditional particle filter algorithm needs a large number of particles to show posteriori probability density function of object state, the calculation of this algorithm is large, and the real-time of tracking is poor, so it is hard to track fast and sheltered object accurately. Considering above problems, this paper proposes a new algorithm that is inserting Mean Shift into particle filter algorithm, this method can make full use of clustering effect of Mean shift to make particles distributed more reasonably, which not only improves the diversity of the particles but also greatly reduces the number of particles used to describe object state. The experimental results show that the improved algorithm has stronger robustness and better real-time performance.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(60662003);吉林省教育厅“十二五”科研规划项目([2011]80);吉林市科技计划(201162505)
引用文本:
侯一民,贺子龙.嵌入Mean Shift 的粒子滤波目标跟踪算法.计算机系统应用,2012,21(12):80-84
HOU Yi-Min,HE Zi-Long.Particle Filter Algorithm Inserting Mean Shift for Object Tracking.COMPUTER SYSTEMS APPLICATIONS,2012,21(12):80-84