###
DOI:
计算机系统应用英文版:2011,20(6):49-51,48
本文二维码信息
码上扫一扫!
基于遗传神经网络的误分类代价敏感网络入侵检测
(杭州电子科技大学 计算机学院, 杭州 310018)
Network Intrusion Detection Based on Genetic Neural Network Misclassification Cost Sensitive
(Institute of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1671次   下载 3137
Received:September 29, 2010    Revised:November 13, 2010
中文摘要: 针对传统的基于遗传神经网络的入侵检测模型未考虑误分类代价的不足,将误分类代价敏感的特征集成到基于遗传神经网络的网络入侵检测模型中,从而克服了传统模型中错误分类时可能导致代价过大的缺点。通过实验结果表明,增加了误分类代价敏感特征后的遗传神经网络能较好地控制网络入侵检测系统误报、漏报攻击时所产生的代价。
Abstract:The paper aims at the insufficient of traditional intrusion detection based on genetic neural network not consider the misclassification cost, integrate the misclassification cost-sensitive features into the network intrusion detection model which based on genetic neural network, to overcome the defect of the traditional model's error classifying result in excessive costs. The experiment results show that after the genetic neural network increased the misclassification cost-sensitive features, it can control the cost caused by the network intrusion detection's false report、 omit report attacks preferably.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
蒋贤特,周晓慧.基于遗传神经网络的误分类代价敏感网络入侵检测.计算机系统应用,2011,20(6):49-51,48
JIANG Xian-Te,ZHOU Xiao-Hui.Network Intrusion Detection Based on Genetic Neural Network Misclassification Cost Sensitive.COMPUTER SYSTEMS APPLICATIONS,2011,20(6):49-51,48