###
计算机系统应用英文版:,():1-9
本文二维码信息
码上扫一扫!
基于双粒度序列融合的下一个兴趣点推荐
(天津科技大学 人工智能学院, 天津 300457)
Next Point-of-interest Recommendation Based on Dual-granularity Sequence Fusion
(College of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin 300457, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 4次   下载 170
Received:June 06, 2024    Revised:June 28, 2024
中文摘要: 针对现有方法无法有效利用签到信息为用户提供更精准的位置推荐服务的问题, 提出一种基于双粒度序列融合的下一个兴趣点推荐模型. 首先, 该模型综合考虑了细粒度的时空序列信息和现实生活中天然存在的粗粒度类别序列信息, 并通过门控循环单元有效捕捉长期依赖关系, 从而丰富签到上下文信息. 然后, 利用提取到的信息将固定划分签到长序列的“硬”划分方式转变为能有效提取完整局部子序列语义信息的“软”划分方式. 最后, 通过对各局部子序列的显著信息进行聚合来构建推荐模型. 提出的模型在Foursquare数据集上召回率、归一化折损累计增益分别平均提升9.07%、9.72%, 在Gowalla数据集上分别平均提升9.37%、10.24%, 实验结果表明该模型具有更优的推荐性能.
Abstract:Existing methods fail to effectively leverage check-in information to provide precise location recommendation services. To address this problem, this study introduces a novel model for the next point-of-interest (POI) recommendation based on dual-granularity sequence fusion. Firstly, the model integrates fine-grained spatio-temporal sequence information with naturally occurring coarse-grained categorical sequence information in real life. It effectively captures long-term dependency relationships using gated recurrent units to enrich the context of check-ins. Subsequently, the model uses the extracted information to transform the “hard” segmentation of long sequences into a “soft” segmentation, enabling the extraction of complete semantic information from local sub-sequences. Finally, the recommendation model aggregates salient information from each local sub-sequence. Experimental results on the Foursquare and Gowalla datasets show that the proposed model improves the recall by 9.07% and 9.37%, respectively, and enhances the normalized discounted cumulative gain by 9.72% and 10.24%, respectively. These results indicate that the proposed model exhibits superior recommendation performance.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(62377036)
引用文本:
彭瑾,史艳翠,刘凌云.基于双粒度序列融合的下一个兴趣点推荐.计算机系统应用,,():1-9
PENG Jin,SHI Yan-Cui,LIU Ling-Yun.Next Point-of-interest Recommendation Based on Dual-granularity Sequence Fusion.COMPUTER SYSTEMS APPLICATIONS,,():1-9